Articles
Testing of materials and structures
1.
№5-6, 2018
УДК 66.017
Kochubey A.Ya.1, Treninkov I.A.1
THE DIFFRACTION ANALYSIS OF THE WHITE X-RADIATION ON CRYSTALS BY EWALD STRUCTURE AT DIRECT POLAR FIGURES CONSTRUCTION
The diffraction analysis of a white X-radiation on twirled crystal lattices with application of Ewald structure is carried out. Assay values are applicable in crystal structure researches in which twirl of crystals is applied, in particular, at construction of direct polar figures. Ewald structure studies communication between parametres of X-ray shooting and the maintenance of direct polar figures of crystals. It is shown, that for construction of a crystal direct polar figure with application of a white X-radiation it is not required to any additional information on a crystal structure of an investigated material
Keywords: continuous roentgen spectrum, white X-radiation, X-ray crystal analysis, crystal structure, Ewald structure.
Reference List
1. Kochubey A.YA., Treninkov I.A. Primenenie belogo rentgenovskogo izlucheniya v strukturnom analize kristallicheskikh materialov [Application of the white Х-radiation in the structural analysis of crystal materials] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2018. №1–2 (29). St. 04. Available at: http://www.materialsnews.ru (accessed: Мay 23, 2018).
2. Kochubey A.YA., Treninkov I.A. Primenenie nepreryvnogo rentgenovskogo spektra dlya postroeniya pryamykh polyusnykh figur kristallov [The continuous roentgen spectrum application for construction of direct polar figures of crystals] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2018. №3–4. S. 71–74. Available at: http://www.materialsnews.ru (accessed: December 6, 2018).
3. Kelli A., Grovs G. Kristallografiya i defekty v kristallakh [Crystallography and defects in crystals. Trans. from Engl.]. Per. s angl. M.: Mir, 1974. 504 s.
4. Van Byuren. Defekty v kristallakh [Defects in crystals. Trans. from Engl.]. Per s angl. M.: Inostrannaya lit. 1962. 584 s.
5. Novikov I.I., Rozin K.M. Kristallografiya i defekty kristallicheskoy reshetki: ucheb. dlya vuzov [Crystallography and defects of crystal lattice: the textbook for higher education institutions]. M.: Metallurgiya, 1990. 336 s.
6. Bouen D.K., Tanner B.K. Vysokorazreshayushchaya rentgenovskaya difraktometriya i topografiya [High-allowing x-ray diffractometry and topography. Trans. from Engl.]. Per. s angl. SPb.: Nauka, 2002. 274 s.
7. Brandon D., Kaplan U. Mikrostruktura materialov. Metody issledovaniya i kontrolya [Microstructure of materials. Research and control methods]. M.: Tekhnosfera, 2004. 384 s.
8. Gine A. Rentgenografiya kristallov. Teoriya i praktika [X-ray grafiya of crystals. Theory and practice. Trans. from Fr.]. Per. s fr. M.: Gos. izd. fiz.-mat. lit., 1961. 604 s.
9. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. Rentgenograficheskiy i elektronno-opticheskiy analiz: ucheb. posobie dlya vuzov [X-ray graphic and electro-optical analysis: the textbook for higher education institutions]. 4-e izd., dop. i pererab. M.: MISIS, 2002. 360 s.
10. Kablov E.N. Additivnye tehnologii – dominanta nacionalnoj tehnologicheskoj iniciativy [The addi-tive technologies – dominant of national technological initiative] // Intellekt i tehnologii. 2015. №2 (11). S. 52–55.
11. Zaitsev D.V., Treninkov I.A., Alekseev A.A. Ultradispersnye plastinchatye vydeleniya v zharoprochnyh nikelevyh splavah [Ultrafine lamellar precipitation in Ni-based superalloys] //Aviacionnye materialy i tehnologii. 2015. №1. S. 49–55.
12. Lukina E.A., Filonova E.V., Treninkov I.A. Mikrostruktura i preimushhestvennye kristallograficheskie orientirovki zharoprochnogo nikelevogo splava, sintezirovannogo metodom SLS, v zavisimosti ot energeticheskogo vozdejstviya i termoobrabotki [The microstructure and preferential crystallographic orientation of nickel superalloy, synthesized by SLM method, depending of the energy impact and heat treatment] // Aviacionnye materialy i tehnologii. 2017. №1 (46). S. 38–44. DOI: 10.18577/2071-9140-2017-0-1-38-44.
13. Petrushin N.V., Elyutin E.S., Raevskikh A.N., Treninkov I.A. Vysokogradientnaya napravlennaya kristallizatsiya intermetallidnogo splava na osnove Ni3Al sistemy Ni–Al–Ta, uprochnennogo fazoy TaS [High-gradient directional solidification of intermetallic Ni–Al–Ta alloy based on Ni3Al, strengthened by TaC-phase] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №3. St. 01.. Available at: http://www.viam-works.ru (accessed: December 8, 2018). DOI: 10.18577/2307-6046-2017-0-3-1-1.
14. Treninkov I.A. Razrabotka rentgenovskikh difraktsionnykh metodov kompleksnoy otsenki strukturnogo stroeniya monokristallov zharoprochnykh nikelevykh splavov: [Development of x-ray diffraction methods of complex assessment of structural structure of monocrystals of heat resisting nickel alloys: thesis, cand. Sc. (Tech.) ]. M., 2013. 25 s.
15. Kochubey A.Ya., Treninkov I.A. Opredelenie parametrov orientirovki monokristallov difraktometricheskim metodom [Definition Single crystals orientation parametres of nickel-base superalloys by diffractometer method] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №2 (26). St. 08. Available at: http://www.materialsnews.ru (accessed: December 8, 2018).
16. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
17. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]/ M.: VIAM, 2015. 720 s.
18. Barret Ch.S., Massalskiy T.B. Struktura metallov v 2 ch. [Structure of metals in 2 p. Trans. from Engl.]. Per. s angl. M.: Metallurgiya, 1984. CH. 1. 352 s.
19. Umanskiy YA.S., Skakov YU.A., Novikov A.N., Rastorguev L.N. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, X-ray grafiya and electron microscopy]. M.: Metallurgiya, 1982. 632 s.
2. Kochubey A.YA., Treninkov I.A. Primenenie nepreryvnogo rentgenovskogo spektra dlya postroeniya pryamykh polyusnykh figur kristallov [The continuous roentgen spectrum application for construction of direct polar figures of crystals] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2018. №3–4. S. 71–74. Available at: http://www.materialsnews.ru (accessed: December 6, 2018).
3. Kelli A., Grovs G. Kristallografiya i defekty v kristallakh [Crystallography and defects in crystals. Trans. from Engl.]. Per. s angl. M.: Mir, 1974. 504 s.
4. Van Byuren. Defekty v kristallakh [Defects in crystals. Trans. from Engl.]. Per s angl. M.: Inostrannaya lit. 1962. 584 s.
5. Novikov I.I., Rozin K.M. Kristallografiya i defekty kristallicheskoy reshetki: ucheb. dlya vuzov [Crystallography and defects of crystal lattice: the textbook for higher education institutions]. M.: Metallurgiya, 1990. 336 s.
6. Bouen D.K., Tanner B.K. Vysokorazreshayushchaya rentgenovskaya difraktometriya i topografiya [High-allowing x-ray diffractometry and topography. Trans. from Engl.]. Per. s angl. SPb.: Nauka, 2002. 274 s.
7. Brandon D., Kaplan U. Mikrostruktura materialov. Metody issledovaniya i kontrolya [Microstructure of materials. Research and control methods]. M.: Tekhnosfera, 2004. 384 s.
8. Gine A. Rentgenografiya kristallov. Teoriya i praktika [X-ray grafiya of crystals. Theory and practice. Trans. from Fr.]. Per. s fr. M.: Gos. izd. fiz.-mat. lit., 1961. 604 s.
9. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. Rentgenograficheskiy i elektronno-opticheskiy analiz: ucheb. posobie dlya vuzov [X-ray graphic and electro-optical analysis: the textbook for higher education institutions]. 4-e izd., dop. i pererab. M.: MISIS, 2002. 360 s.
10. Kablov E.N. Additivnye tehnologii – dominanta nacionalnoj tehnologicheskoj iniciativy [The addi-tive technologies – dominant of national technological initiative] // Intellekt i tehnologii. 2015. №2 (11). S. 52–55.
11. Zaitsev D.V., Treninkov I.A., Alekseev A.A. Ultradispersnye plastinchatye vydeleniya v zharoprochnyh nikelevyh splavah [Ultrafine lamellar precipitation in Ni-based superalloys] //Aviacionnye materialy i tehnologii. 2015. №1. S. 49–55.
12. Lukina E.A., Filonova E.V., Treninkov I.A. Mikrostruktura i preimushhestvennye kristallograficheskie orientirovki zharoprochnogo nikelevogo splava, sintezirovannogo metodom SLS, v zavisimosti ot energeticheskogo vozdejstviya i termoobrabotki [The microstructure and preferential crystallographic orientation of nickel superalloy, synthesized by SLM method, depending of the energy impact and heat treatment] // Aviacionnye materialy i tehnologii. 2017. №1 (46). S. 38–44. DOI: 10.18577/2071-9140-2017-0-1-38-44.
13. Petrushin N.V., Elyutin E.S., Raevskikh A.N., Treninkov I.A. Vysokogradientnaya napravlennaya kristallizatsiya intermetallidnogo splava na osnove Ni3Al sistemy Ni–Al–Ta, uprochnennogo fazoy TaS [High-gradient directional solidification of intermetallic Ni–Al–Ta alloy based on Ni3Al, strengthened by TaC-phase] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №3. St. 01.. Available at: http://www.viam-works.ru (accessed: December 8, 2018). DOI: 10.18577/2307-6046-2017-0-3-1-1.
14. Treninkov I.A. Razrabotka rentgenovskikh difraktsionnykh metodov kompleksnoy otsenki strukturnogo stroeniya monokristallov zharoprochnykh nikelevykh splavov: [Development of x-ray diffraction methods of complex assessment of structural structure of monocrystals of heat resisting nickel alloys: thesis, cand. Sc. (Tech.) ]. M., 2013. 25 s.
15. Kochubey A.Ya., Treninkov I.A. Opredelenie parametrov orientirovki monokristallov difraktometricheskim metodom [Definition Single crystals orientation parametres of nickel-base superalloys by diffractometer method] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №2 (26). St. 08. Available at: http://www.materialsnews.ru (accessed: December 8, 2018).
16. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
17. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]/ M.: VIAM, 2015. 720 s.
18. Barret Ch.S., Massalskiy T.B. Struktura metallov v 2 ch. [Structure of metals in 2 p. Trans. from Engl.]. Per. s angl. M.: Metallurgiya, 1984. CH. 1. 352 s.
19. Umanskiy YA.S., Skakov YU.A., Novikov A.N., Rastorguev L.N. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, X-ray grafiya and electron microscopy]. M.: Metallurgiya, 1982. 632 s.
2.
№3-4, 2018
УДК 66.017
Kochubey A.Ya.1, Treninkov I.A.1
THE CONTINUOUS ROENTGEN SPECTRUM APPLICATION FOR CONSTRUCTION OF DIRECT POLAR FIGURES OF CRYSTALS
Physical principles of construction of direct polar figures are stated at roentgen radiation of crystals in a continuous roentgen spectrum. Basic differences of such construction from construction of direct polar figures with application of a monochromatic х-radiation are specified.
Communication of parametres of х-ray experiment with quantity of poles on a direct polar figure is shown. Conditions of reception of direct polar figures with demanded quantity of families of poles are defined. Possibility of application of the most widespread х-ray diffractometers is shown at the solution of the observed problems.
Keywords: continuous roentgen spectrum, white х-radiation, х-ray crystal analysis, crystal structure, metal research.
Reference List
1. Arginbaeva E.G., Bazyleva O.A., Kolodochkina V.G., Khvatskij K.K. Vliyanie kristallograficheskoj orientacii na strukturu i fiziko-mehanicheskie svojstva intermetallidnogo splava na osnove Ni3Al [The influence of crystallographic oriental on structure, physical and mechanical properties of intermetallic alloys based on Ni3Al] // Aviacionnye materialy i tehnologii. 2013. №2. S. 3–7.
2. Kelli A., Grovs G. Kristallografiya i defekty v kristallah [Crystallography and defects in crystals]. Per s angl. M.: Mir, 1974. 504 s.
3. Van Byuren. Defekty v kristallah [Defects in crystals]. Per s angl. M.: Inostr. lit., 1962. 584 s.
4. Novikov I.I., Rozin K.M. Kristallografiya i defekty kristallicheskoj reshetki: ucheb. dlya vuzov [Crystallography and defects of crystal lattice: the textbook for higher education institutions]. M.: Metallurgiya, 1990. 336 s.
5. Nazarkin R.M. Rentgenodifrakcionnye metodiki precizionnogo opredeleniya parametrov kristallicheskih reshetok nikelevyh zharoprochnyh splavov (kratkij obzor) [X-ray diffraction techniques for precise determination of lattice constants in Ni-based superalloys: a brief review] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 41–48.
6. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and x-ray of the structural analysis for research of structural and phase condition of materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: 23 May, 2018).
7. Barret Ch.S., Massalskij T.B. Struktura metallov v 2 ch [Structure of metals in 2 parts]. Per. s angl. M.: Metallurgiya, 1984. Ch. 1. 352 s.
8. Bouen D.K., Tanner B.K. Vysokorazreshayushchaya rentgenovskaya difraktometriya i topografiya [High-allowing x-ray diffractometry and topography] / Per. s angl. I.L. Shulpinoj i T.S. Argunovoj. SPb.: Nauka, 2002. 274 s.
9. Brandon D., Kaplan U. Mikrostruktura materialov. Metody issledovaniya i kontrolya [Microstructure of materials. Research and control methods]. M.: Tekhnosfera, 2004. 384 s.
10. Umanskij YA.S., Skakov Yu.A., Novikov A.N., Rastorguev L.N. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, roentgenography and electron microscopy]. M.: Metallurgiya, 1982. 632 s.
11. Gine A. Rentgenografiya kristallov. Teoriya i praktika [Roentgenography of crystals. Theory and practice]. Per. s fr. M.: Gos. izd. fiz-mat. lit., 1961. 604 s.
12. Gorelik S.S., Skakov YU.A., Rastorguev L.N. Rentgenograficheskij i elektronno-opticheskij analiz: ucheb. posobie dlya vuzov. 4-e izd., dop. i pererab. [Radiographic and electron-optical analysis: the manual for higher education institutions. 4th edition. Added and processed]. M.: MISIS, 2002. 360 s.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]. M.: VIAM, 2015. 720 s.
15. Kablov E.N. Additivnye tehnologii – dominanta nacionalnoj tehnologicheskoj iniciativy [The addi-tive technologies – dominant of national technological initiative] // Intellekt i tehnologii. 2015. №2 (11). S. 52–55.
16. Treninkov I.A. Razrabotka rentgenovskih difraktsionnyh metodov kompleksnoj otsenki strukturnogo stroeniya monokristallov zharoprochnyh nikelevyh splavov: avtoref. dis. ... kand. tekhn. Nauk [Development of x-ray diffraction methods of complex assessment of structural structure of monocrystals of heat resisting nickel alloys: thesis, cand. Sc. (Tech.)]. M., 2013. 25 s.
17. Kochubej A.Ya., Treninkov I.A. Opredelenie parametrov orientirovki monokristallov difraktometricheskim metodom [Definition Single crystals orientation parametres of nickel-base superalloys by diffractometer method] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №2 (26). St. 08. Available at: http://www.mterialsnews.ru (accessed: 23 May, 2018).
18. Kochubej A.Ya., Treninkov I.A. Primenenie belogo rentgenovskogo izlucheniya v strukturnom analize kristallicheskih materialov [Application of the white x-radiation in the structural analysis of crystal materials] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2018. №1–2 (29). St. 04. Available at: http://www.mterialsnews.ru (accessed: 23 May, 2018).
2. Kelli A., Grovs G. Kristallografiya i defekty v kristallah [Crystallography and defects in crystals]. Per s angl. M.: Mir, 1974. 504 s.
3. Van Byuren. Defekty v kristallah [Defects in crystals]. Per s angl. M.: Inostr. lit., 1962. 584 s.
4. Novikov I.I., Rozin K.M. Kristallografiya i defekty kristallicheskoj reshetki: ucheb. dlya vuzov [Crystallography and defects of crystal lattice: the textbook for higher education institutions]. M.: Metallurgiya, 1990. 336 s.
5. Nazarkin R.M. Rentgenodifrakcionnye metodiki precizionnogo opredeleniya parametrov kristallicheskih reshetok nikelevyh zharoprochnyh splavov (kratkij obzor) [X-ray diffraction techniques for precise determination of lattice constants in Ni-based superalloys: a brief review] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 41–48.
6. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and x-ray of the structural analysis for research of structural and phase condition of materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: 23 May, 2018).
7. Barret Ch.S., Massalskij T.B. Struktura metallov v 2 ch [Structure of metals in 2 parts]. Per. s angl. M.: Metallurgiya, 1984. Ch. 1. 352 s.
8. Bouen D.K., Tanner B.K. Vysokorazreshayushchaya rentgenovskaya difraktometriya i topografiya [High-allowing x-ray diffractometry and topography] / Per. s angl. I.L. Shulpinoj i T.S. Argunovoj. SPb.: Nauka, 2002. 274 s.
9. Brandon D., Kaplan U. Mikrostruktura materialov. Metody issledovaniya i kontrolya [Microstructure of materials. Research and control methods]. M.: Tekhnosfera, 2004. 384 s.
10. Umanskij YA.S., Skakov Yu.A., Novikov A.N., Rastorguev L.N. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, roentgenography and electron microscopy]. M.: Metallurgiya, 1982. 632 s.
11. Gine A. Rentgenografiya kristallov. Teoriya i praktika [Roentgenography of crystals. Theory and practice]. Per. s fr. M.: Gos. izd. fiz-mat. lit., 1961. 604 s.
12. Gorelik S.S., Skakov YU.A., Rastorguev L.N. Rentgenograficheskij i elektronno-opticheskij analiz: ucheb. posobie dlya vuzov. 4-e izd., dop. i pererab. [Radiographic and electron-optical analysis: the manual for higher education institutions. 4th edition. Added and processed]. M.: MISIS, 2002. 360 s.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]. M.: VIAM, 2015. 720 s.
15. Kablov E.N. Additivnye tehnologii – dominanta nacionalnoj tehnologicheskoj iniciativy [The addi-tive technologies – dominant of national technological initiative] // Intellekt i tehnologii. 2015. №2 (11). S. 52–55.
16. Treninkov I.A. Razrabotka rentgenovskih difraktsionnyh metodov kompleksnoj otsenki strukturnogo stroeniya monokristallov zharoprochnyh nikelevyh splavov: avtoref. dis. ... kand. tekhn. Nauk [Development of x-ray diffraction methods of complex assessment of structural structure of monocrystals of heat resisting nickel alloys: thesis, cand. Sc. (Tech.)]. M., 2013. 25 s.
17. Kochubej A.Ya., Treninkov I.A. Opredelenie parametrov orientirovki monokristallov difraktometricheskim metodom [Definition Single crystals orientation parametres of nickel-base superalloys by diffractometer method] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №2 (26). St. 08. Available at: http://www.mterialsnews.ru (accessed: 23 May, 2018).
18. Kochubej A.Ya., Treninkov I.A. Primenenie belogo rentgenovskogo izlucheniya v strukturnom analize kristallicheskih materialov [Application of the white x-radiation in the structural analysis of crystal materials] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2018. №1–2 (29). St. 04. Available at: http://www.mterialsnews.ru (accessed: 23 May, 2018).
3.
№3-4, 2018
УДК 620.1:678.8
Nikolaev E.V.1, Pavlov M.R.1, Andreeva N.P.1, Slavin A.V.1, Skirta A.A.1
INVESTIGATION OF THE AGING PROCESSES OF POLYMERIC COMPOSITE MATERIALS IN NATURAL CONDITIONS OF TROPICAL CLIMATE OF NORTH AMERICA
On the example of polymer composite materials of three types: carbonic fiber, fibreglasses and organic fiber, for aviation purposes, a study was made of the influence of the combination of climatic factors in the weathering of the tropical climate of North America on the firmness of their strength characteristics at normal and higher temperatures, and structural effects climatic effects is carried out.
The paper presents the results of Arizona-test (tropical dry climate) and Florida-test (tropical wet climate).
Keywords: polymeric composite materials, climatic factors, aging, structural transformations, strength characteristics of polymer composite materials.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Gurtovnik I.G., Sportsmen V.N. Stekloplastiki radiotekhnicheskogo naznacheniya [Fibreglasses of radio engineering assignment]. M.: Himiya, 1987. 160 s.
3. Kablov E.N. Materialy novogo pokolenija – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tehnologii. 2016. №2 (14). S. 16–21.
4. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviatsionnye materialy i tekhnologii. 2015. №4 (37). S. 38–52. DOI: 10/18577/2071-9140-2015-0-4-38-52.
6. Klimaticheskie ispytaniya // Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [Climatic tests // History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012. S. 429–438.
7. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R. Kompleksnoe issledovanie vozdejstviya klimaticheskih i ekspluatacionnyh faktorov na novoe pokolenie epoksidnogo svyazuyushhego i polimernyh kompozicionnyh materialov na ego osnove. Chast 2. Obosnovanie vybora rezhimov i provedenie teplovogo stareniya polimernyh kompozicionnyh materialov na osnove epoksidnoj matricy [Comprehensive research of the influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis Part 2. Substantiation of the choice of modes and conducting heat aging of polymeric composite materials based on epoxy matrix] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 10. Available at: http://www.viam-works.ru (accessed: June 16, 2018). DOI: 10.18577/2307-6046-2016-0-1-80-89.
8. Valevin E.O., Andreeva N.P., Pavlov M.R. Kompleksnyj podhod k issledovaniyu protsessov stareniya polimernyh kompozitsionnyh materialov pri vozdejstvii klimaticheskih faktorov [Integrated approach to research of processes of aging of polymeric composite materials at influence of climatic factors] // Problemy otsenki klimaticheskoj stojkosti materialov i slozhnyh tekhnicheskih sistem: sb. dokl. II Vseros. nauch.-tekhnich. konfe. «Klimat-2017» (Gelendzhik, 3–4 avg. 2017 g.). M.: VIAM, 2017. S. 8–20 (CD).
9. Gurtovnik I.G., Sokolov V.I., Trofimov N.N., Shalgunov S.I. Radioprozrachnye izdeliya iz stekloplastikov [Radio transparent products from fibreglasses]. M.: Mir, 2002. 368 s.
10. Andreeva N.P., Pavlov M.R., Nikolaev E.V., Slavin A.V. Vliyanie klimaticheskih faktorov tropicheskogo i umerennogo klimata na svojstva lakokrasochnyh pokrytij na uretanovoj osnove [Influence of climatic factors of tropical and temperate climate on properties of paint coatings on urethane basis] // Lakokrasochnye materialy i ih primenenie. 2018. №4. S. 24–28.
11. Emanuel N.M., Buchachenko A.L. Himicheskaya fizika molekulyarnogo razrusheniya i stabilizatsii polimerov [Chemical physics of molecular destruction and stabilization of polymers]. M.: Nauka, 1988. 365 s.
12. Pavlov N.N. Starenie plastmass v estestvennyh i iskusstvennyh usloviyah [Aging of plastic in natural and simulated conditions]. M.: Himiya, 1982. 224 s.
13. Filatov I.S. Prognozirovanie klimaticheskoj ustojchivosti polimernyh i kompozitsionnyh materialov na ih osnove: avtoref. dis. … dokt. Tekhn [Forecasting of climatic stability of polymeric and composite materials on their basis: thesis, Dr. Sc. (Tech.)]. nauk. Yakutsk, 1984. 489 s.
14. Nikolaev E.V., Pavlov M.R., Laptev A.B., Ponomarenko S.A. K voprosu opredeleniya sorbirovannoj vlagi v polimernyh kompozitsionnyh materialah [To the problem of determining the moisture sorbed in polymeric composite materials] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №8 (56). St. 07. Available at: http://www.viam-works.ru (accessed: June 16, 2018). DOI: 10.18577/2307-6046-2017-0-8-7-7.
15. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grash-chenkov D.V. Kompleksnoe issledovanie vozdeystviya klimaticheskikh i ekspluatatsionnykh faktorov na novoe pokolenie epoksidnogo svyazuyushchego i polimernykh kompozitsionnykh materialov na ego osnove. Chast 4. Naturnye klimaticheskie ispytaniya polimernykh kompozitsionnykh materialov na osnove epoksidnoy matritsy [Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 4. Natural climatic tests of polymeric composite materials on the basis of epoxy matrix] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №6. St. 11. Available at: http://www.viam-works.ru (accessed: June 16, 2018). DOI: 10.18577/2307-6046-2016-0-6-11-11.
16. Silverstejn R., Bassler G., Morril T. Spektrometricheskaya identifikatsiya organicheskih soedinenij [Spectrometer identification of organic connections]. M.: Mir, 1977. 580 s.
17. Prech E., Byulmann F., Affolter K. Opredelenie stroeniya organicheskih soedinenij. Tablitsy spektralnyh dannyh [Definition of structure of organic connections. Tables of spectral data]. M.: Mir; BINOM. Laboratoriya znanij, 2006. 438 s.
2. Gurtovnik I.G., Sportsmen V.N. Stekloplastiki radiotekhnicheskogo naznacheniya [Fibreglasses of radio engineering assignment]. M.: Himiya, 1987. 160 s.
3. Kablov E.N. Materialy novogo pokolenija – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tehnologii. 2016. №2 (14). S. 16–21.
4. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviatsionnye materialy i tekhnologii. 2015. №4 (37). S. 38–52. DOI: 10/18577/2071-9140-2015-0-4-38-52.
6. Klimaticheskie ispytaniya // Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [Climatic tests // History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012. S. 429–438.
7. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R. Kompleksnoe issledovanie vozdejstviya klimaticheskih i ekspluatacionnyh faktorov na novoe pokolenie epoksidnogo svyazuyushhego i polimernyh kompozicionnyh materialov na ego osnove. Chast 2. Obosnovanie vybora rezhimov i provedenie teplovogo stareniya polimernyh kompozicionnyh materialov na osnove epoksidnoj matricy [Comprehensive research of the influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis Part 2. Substantiation of the choice of modes and conducting heat aging of polymeric composite materials based on epoxy matrix] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 10. Available at: http://www.viam-works.ru (accessed: June 16, 2018). DOI: 10.18577/2307-6046-2016-0-1-80-89.
8. Valevin E.O., Andreeva N.P., Pavlov M.R. Kompleksnyj podhod k issledovaniyu protsessov stareniya polimernyh kompozitsionnyh materialov pri vozdejstvii klimaticheskih faktorov [Integrated approach to research of processes of aging of polymeric composite materials at influence of climatic factors] // Problemy otsenki klimaticheskoj stojkosti materialov i slozhnyh tekhnicheskih sistem: sb. dokl. II Vseros. nauch.-tekhnich. konfe. «Klimat-2017» (Gelendzhik, 3–4 avg. 2017 g.). M.: VIAM, 2017. S. 8–20 (CD).
9. Gurtovnik I.G., Sokolov V.I., Trofimov N.N., Shalgunov S.I. Radioprozrachnye izdeliya iz stekloplastikov [Radio transparent products from fibreglasses]. M.: Mir, 2002. 368 s.
10. Andreeva N.P., Pavlov M.R., Nikolaev E.V., Slavin A.V. Vliyanie klimaticheskih faktorov tropicheskogo i umerennogo klimata na svojstva lakokrasochnyh pokrytij na uretanovoj osnove [Influence of climatic factors of tropical and temperate climate on properties of paint coatings on urethane basis] // Lakokrasochnye materialy i ih primenenie. 2018. №4. S. 24–28.
11. Emanuel N.M., Buchachenko A.L. Himicheskaya fizika molekulyarnogo razrusheniya i stabilizatsii polimerov [Chemical physics of molecular destruction and stabilization of polymers]. M.: Nauka, 1988. 365 s.
12. Pavlov N.N. Starenie plastmass v estestvennyh i iskusstvennyh usloviyah [Aging of plastic in natural and simulated conditions]. M.: Himiya, 1982. 224 s.
13. Filatov I.S. Prognozirovanie klimaticheskoj ustojchivosti polimernyh i kompozitsionnyh materialov na ih osnove: avtoref. dis. … dokt. Tekhn [Forecasting of climatic stability of polymeric and composite materials on their basis: thesis, Dr. Sc. (Tech.)]. nauk. Yakutsk, 1984. 489 s.
14. Nikolaev E.V., Pavlov M.R., Laptev A.B., Ponomarenko S.A. K voprosu opredeleniya sorbirovannoj vlagi v polimernyh kompozitsionnyh materialah [To the problem of determining the moisture sorbed in polymeric composite materials] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №8 (56). St. 07. Available at: http://www.viam-works.ru (accessed: June 16, 2018). DOI: 10.18577/2307-6046-2017-0-8-7-7.
15. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grash-chenkov D.V. Kompleksnoe issledovanie vozdeystviya klimaticheskikh i ekspluatatsionnykh faktorov na novoe pokolenie epoksidnogo svyazuyushchego i polimernykh kompozitsionnykh materialov na ego osnove. Chast 4. Naturnye klimaticheskie ispytaniya polimernykh kompozitsionnykh materialov na osnove epoksidnoy matritsy [Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 4. Natural climatic tests of polymeric composite materials on the basis of epoxy matrix] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №6. St. 11. Available at: http://www.viam-works.ru (accessed: June 16, 2018). DOI: 10.18577/2307-6046-2016-0-6-11-11.
16. Silverstejn R., Bassler G., Morril T. Spektrometricheskaya identifikatsiya organicheskih soedinenij [Spectrometer identification of organic connections]. M.: Mir, 1977. 580 s.
17. Prech E., Byulmann F., Affolter K. Opredelenie stroeniya organicheskih soedinenij. Tablitsy spektralnyh dannyh [Definition of structure of organic connections. Tables of spectral data]. M.: Mir; BINOM. Laboratoriya znanij, 2006. 438 s.
4.
№1-2, 2018
УДК 539.26
Kochubey A.Ya.1, Treninkov I.A.1
APPLICATION OF THE WHITE X-RADIATION IN THE STRUCTURAL ANALYSIS OF CRYSTAL MATERIALS
A crystal structure analysis of different materials by construction of pole figures in white (continuous spectrum) a X-radiation and them indicating was carried out. On polе figures types of crystal lattices and them crystal system was defined. Pole figures from metals with different type of a cubic lattice was built and analysed: silicon (a diamond lattice), molybdenum (body-centered) and nickel (face-centered).
Keywords: white X-radiation, X-ray crystal analysis, crystal structure, metal research.
Reference List
1. Arginbaeva E.G., Bazyleva O.A., Kolodochkina V.G., Khvatskij K.K. Vliyanie kristallograficheskoj orientacii na strukturu i fiziko-mehanicheskie svojstva intermetallidnogo splava na osnove Ni3Al [The influence of crystallographic oriental on structure, physical and mechanical properties of intermetallic alloys based on Ni3Al] // Aviacionnye materialy i tehnologii. 2013. №2. S. 3–7.
2. Kelli A., Grovs G. Kristallografija i defekty v kristallah [Crystallography and defects in crystals] / Per s angl S.N. Gorina, O.M. Kugaenko i V.S. Savchenko pod red. M.P. Shaskolskoj. M.: Mir, 1974. 504 s.
3. Van Bjuren. Defekty v kristallah [Defects in crystals]. Per s angl. / pod red A.N. Orlova i V.R. Regelja. M.: Inostr. lit., 1962. 584 s.
4. Novikov I.I., Rozin K.M. Kristallografija i defekty kristallicheskoj reshetki [Crystallography and defects of crystal lattice]: ucheb. dlja vuzov. M.: Metallurgija, 1990. 336 s.
5. Nazarkin R.M. Rentgenodifrakcionnye metodiki precizionnogo opredeleniya parametrov kristallicheskih reshetok nikelevyh zharoprochnyh splavov (kratkij obzor) [X-ray diffraction techniques for precise determination of lattice constants in Ni-based superalloys: a brief review] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 41–48.
6. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and X-ray of the structural analysis for research of structural and phase condition of materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: March 30, 2018).
7. Barret Ch.S., Massalskij T.B. Struktura metallov v 2 ch. [Structure of metals in 2 p.]. Per. s angl. M.: Metallurgija, 1984. Ch. 1. 352 s.
8. Boujen D.K., Tanner B.K. Vysokorazreshajushhaja rentgenovskaja difraktometrija i topografija [High-allowing x-ray diffractometry and topography] / Per. s angl. I.L. Shulpinoj i T.S. Argunovoj. SPb.: Nauka, 2002. 274 s.
9. Brandon D., Kaplan U. Mikrostruktura materialov. Metody issledovanija i kontrolja [Microstructure of materials. Research and control methods]. M.: Tehnosfera, 2004. 384 s.
10. Umanskij Ja.S., Skakov Ju.A., Novikov A.N., Rastorguev L.N. Kristallografija, rentgenografija i jelektronnaja mikroskopija [Crystallography, roentgenography and electron microscopy]. M.: Metallurgija, 1982. 632 s.
11. Gine A. Rentgenografija kristallov. Teorija i praktika [Roentgenography of crystals. Theory and practice]. Per. s fr. / pod red. N.V. Belova. M.: Gos. izd. fiz-mat. lit., 1961. 604 s.
12. Gorelik S.S., Skakov Ju.A., Rastorguev L.N. Rentgenograficheskij i jelektronno-opticheskij analiz [Radiographic and electron-optical analysis]: ucheb. posobie dlja vuzov. 4-e izd., dop. i pererab. M.: MISIS, 2002. 360 s.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strate-gicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]. M.: VIAM, 2015. 720 s.
15. Kablov E.N. Additivnye tehnologii – dominanta nacionalnoj tehnologicheskoj iniciativy [The additive technologies – dominant of national technological initiative] // Intellekt i tehnologii. 2015. №2 (11). S. 52–55.
16. Treninkov I.A. Razrabotka rentgenovskih difrakcionnyh metodov kompleksnoj ocenki strukturnogo stroenija monokristallov zharoprochnyh nikelevyh splavov: avtoref. dis. ... kand. tehn. Nauk [Development of x-ray diffraction methods of complex assessment of structural structure of monocrystals of heat resisting nickel alloys: thesis cand. Sc. (Tech.)]. M., 2013. 25 s.
17. Kochubej A.Ja., Treninkov I.A. Opredelenie parametrov orientirovki monokristallov di-fraktometricheskim metodom [Definition single crystals orientation parametres of nickel-base superalloys by diffractometer method] // Novosti materialovedenija. Nauka i tehnika. 2017. №2 (26). St. 08. Available at: http://www.mterialsnews.ru (accessed: March 30, 2018).
2. Kelli A., Grovs G. Kristallografija i defekty v kristallah [Crystallography and defects in crystals] / Per s angl S.N. Gorina, O.M. Kugaenko i V.S. Savchenko pod red. M.P. Shaskolskoj. M.: Mir, 1974. 504 s.
3. Van Bjuren. Defekty v kristallah [Defects in crystals]. Per s angl. / pod red A.N. Orlova i V.R. Regelja. M.: Inostr. lit., 1962. 584 s.
4. Novikov I.I., Rozin K.M. Kristallografija i defekty kristallicheskoj reshetki [Crystallography and defects of crystal lattice]: ucheb. dlja vuzov. M.: Metallurgija, 1990. 336 s.
5. Nazarkin R.M. Rentgenodifrakcionnye metodiki precizionnogo opredeleniya parametrov kristallicheskih reshetok nikelevyh zharoprochnyh splavov (kratkij obzor) [X-ray diffraction techniques for precise determination of lattice constants in Ni-based superalloys: a brief review] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 41–48.
6. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and X-ray of the structural analysis for research of structural and phase condition of materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: March 30, 2018).
7. Barret Ch.S., Massalskij T.B. Struktura metallov v 2 ch. [Structure of metals in 2 p.]. Per. s angl. M.: Metallurgija, 1984. Ch. 1. 352 s.
8. Boujen D.K., Tanner B.K. Vysokorazreshajushhaja rentgenovskaja difraktometrija i topografija [High-allowing x-ray diffractometry and topography] / Per. s angl. I.L. Shulpinoj i T.S. Argunovoj. SPb.: Nauka, 2002. 274 s.
9. Brandon D., Kaplan U. Mikrostruktura materialov. Metody issledovanija i kontrolja [Microstructure of materials. Research and control methods]. M.: Tehnosfera, 2004. 384 s.
10. Umanskij Ja.S., Skakov Ju.A., Novikov A.N., Rastorguev L.N. Kristallografija, rentgenografija i jelektronnaja mikroskopija [Crystallography, roentgenography and electron microscopy]. M.: Metallurgija, 1982. 632 s.
11. Gine A. Rentgenografija kristallov. Teorija i praktika [Roentgenography of crystals. Theory and practice]. Per. s fr. / pod red. N.V. Belova. M.: Gos. izd. fiz-mat. lit., 1961. 604 s.
12. Gorelik S.S., Skakov Ju.A., Rastorguev L.N. Rentgenograficheskij i jelektronno-opticheskij analiz [Radiographic and electron-optical analysis]: ucheb. posobie dlja vuzov. 4-e izd., dop. i pererab. M.: MISIS, 2002. 360 s.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strate-gicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]. M.: VIAM, 2015. 720 s.
15. Kablov E.N. Additivnye tehnologii – dominanta nacionalnoj tehnologicheskoj iniciativy [The additive technologies – dominant of national technological initiative] // Intellekt i tehnologii. 2015. №2 (11). S. 52–55.
16. Treninkov I.A. Razrabotka rentgenovskih difrakcionnyh metodov kompleksnoj ocenki strukturnogo stroenija monokristallov zharoprochnyh nikelevyh splavov: avtoref. dis. ... kand. tehn. Nauk [Development of x-ray diffraction methods of complex assessment of structural structure of monocrystals of heat resisting nickel alloys: thesis cand. Sc. (Tech.)]. M., 2013. 25 s.
17. Kochubej A.Ja., Treninkov I.A. Opredelenie parametrov orientirovki monokristallov di-fraktometricheskim metodom [Definition single crystals orientation parametres of nickel-base superalloys by diffractometer method] // Novosti materialovedenija. Nauka i tehnika. 2017. №2 (26). St. 08. Available at: http://www.mterialsnews.ru (accessed: March 30, 2018).
5.
№5-6, 2017
УДК 669.018.44:620.178.322.2
Belyaev M.S.1, Gorbovets M.A.1, Shvedov V.A.1
THE INFLUENCE OF TEST CONDITIONS ON THE LOW CYCLE FATIGUE AND PARAMETERS OF CYCLIC DEFORMATION OF SUPERALLOY VZH175
Investigation of low-cycle fatigue of superalloy VZh175 held at a given total strain Δεt and temperatures 20, 650, 750°С. Smooth samples with a diameter of 5,0 mm has been tested at a loading frequency of 1 Hz on the basis of 104 cycles.
Analyzed the change of the loops of the elastic-plastic hysteresis depending on the number of cycles and test temperature. Width of the hysteresis loop εin ambiguous varies with temperature.
The middle line of low cycle fatigue is built and the values of the endurance limits determined. Most high limit of LCF superalloy VZh175 has at room temperature. Also characteristics of LCF determined by the accumulated strain εn.
Keywords: low сycle fatigue (LCF), elastic-plastic hysteresis, inelastic deformation, characteristics of LCF, superalloy VZh175.
Reference List
1. Inozemcev A.A., Ratchiev A.M., Nihamkin M.Sh. i dr. Malociklovaja ustalost' i ciklicheskaja treshhinostojkost' nikelevogo splava pri nagruzhenii, harakternom dlja diskov turbin [Low-cyclic fatigue and cyclic treshchinostoykost of nickel alloy when loading, characteristic for disks of turbines] // Tjazheloe mashinostroenie. 2011. №4. S. 30–33.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Reed R.C. The superalloys: Fundamentals and applications. Cambridge University Press, 2006. 372 p.
4. Gorbovec M.A., Bazyleva O.A., Beljaev M.S., Hodinev I.A. Malociklovaja ustalost' monokristallicheskogo intermetallidnogo splava tipa VKNA v uslovijah «zhestkogo» nagruzhenija [Low-cyclic fatigue of single-crystal intermetallidny alloy of VKNA type in the conditions of «rigid» loading] // Metallurg. 2014. №8. S. 111–114.
5. Beljaev M.S., Terent'ev V.F., Gorbovec M.A., Bakradze M.M., Antonova O.S. Malociklovaja ustalost' zharoprochnogo nikelevogo splava VZh175 v uslovijah zhestkogo nagruzhenija [Low-cyclic fatigue of heat resisting VZh175 nickel alloy in the conditions of rigid loading] // Deformacija i razrushenie materialov. 2015. №9. S. 17–24.
6. Golubovskij E.R., Svetlov I.L., Petrushin N.V., Cherkasova S.A., Volkov M.E. Malociklovaja ustalost' monokristallov zharoprochnyh nikelevyh splavov pri povyshennyh temperaturah [Low-cyclic fatigue of monocrystals of heat resisting nickel alloys at elevated temperatures] // Deformacija i razrushenie materialov. 2009. №8. S. 41–48.
7. Wright J.K., Carroll L.J., Simpson J.A. et al. Low cycle fatigue of alloy 617 at 850°C and 950°C // J. Eng. Mat. Tech. 2013. Vol. 135. No. 7. P. 031005(1–8).
8. Zhong Z., Gu Y., Yuan Y. et al. On the low cycle fatigue behaviour of a Ni-based superalloy containing high Co and Ti contents // Mater. Sci. Eng. 2012. Vol. A552. P. 434–443.
9. Gao G., Duan S., Zhang W. A study of high temperature low cycle fatigue life prediction for two superalloys // Journal of Engineering Research. 2015. Vol. 3. No. 1. P. 114–126.
10. Gao G., Duan S., Zhang W. Low cycle fatigue life prediction for GH 4133 at 550°C based on power-exponent function // Journal of Engineering Research. 2015. Vol. 3. No. 3. P. 111–124.
11. Maier G., Riedel H., Somsen C. Cyclic deformation and lifetime of Alloy 617B during isothermal low cycle fatigue // Int. J. Fatigue. 2013. Vol. 55. P. 126–135.
12. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravlenija razvitija tehnologij proizvodstva zharoprochnyh materialov dlja aviacionnogo dvigatelestroenija [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedenija. 2013. №3. S. 47–54.
13. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] // Aviacionnye materialy i tehnologii. 2012. №S.
S. 52–57.
14. Bakradze M.M., Ovsepyan S.V., Shugaev S.A., Letnikov M.N. Vliyanie rezhimov zakalki na strukturu i svojstva shtampovok diskov iz zharoprochnogo nikelevogo splava EK151-ID [The influence of quenching on structure and properties nickel-based superalloy EK151-ID forgings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №9. St. 01. Available at: http://www.viam-works.ru (accessed: October 12, 2017).
15. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Osobennosti legirovaniya i termicheskoj obrabotki zharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej novogo pokolenija [Features of alloying and thermal processing of heat resisting nickel alloys for disks of gas turbine engines of new generation] //Aviacionnye materialy i tehnologii. 2010. №2. S. 3–8.
16. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
17. Kablov E.N., Petrushin N.V., Svetlov I.L. Sovremennye litye nikelevye zharoprochnye splavy [Modern cast nickel hot strength alloys] // Nauchnye idei S.T. Kishkina i sovremennoe materialovedenie: tr. Mezhdunar. nauch.-tekhnich. konf. M.: VIAM, 2006. S. 39–55.
18. Stepnov M.N., Shavrin A.V. Statisticheskie metody obrabotki rezul'tatov mehanicheskih ispytanij: spravochnik [Statistical methods of processing of results of mechanical tests: directory]. M.: Mashinostroenie, 2005. 400 s.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Reed R.C. The superalloys: Fundamentals and applications. Cambridge University Press, 2006. 372 p.
4. Gorbovec M.A., Bazyleva O.A., Beljaev M.S., Hodinev I.A. Malociklovaja ustalost' monokristallicheskogo intermetallidnogo splava tipa VKNA v uslovijah «zhestkogo» nagruzhenija [Low-cyclic fatigue of single-crystal intermetallidny alloy of VKNA type in the conditions of «rigid» loading] // Metallurg. 2014. №8. S. 111–114.
5. Beljaev M.S., Terent'ev V.F., Gorbovec M.A., Bakradze M.M., Antonova O.S. Malociklovaja ustalost' zharoprochnogo nikelevogo splava VZh175 v uslovijah zhestkogo nagruzhenija [Low-cyclic fatigue of heat resisting VZh175 nickel alloy in the conditions of rigid loading] // Deformacija i razrushenie materialov. 2015. №9. S. 17–24.
6. Golubovskij E.R., Svetlov I.L., Petrushin N.V., Cherkasova S.A., Volkov M.E. Malociklovaja ustalost' monokristallov zharoprochnyh nikelevyh splavov pri povyshennyh temperaturah [Low-cyclic fatigue of monocrystals of heat resisting nickel alloys at elevated temperatures] // Deformacija i razrushenie materialov. 2009. №8. S. 41–48.
7. Wright J.K., Carroll L.J., Simpson J.A. et al. Low cycle fatigue of alloy 617 at 850°C and 950°C // J. Eng. Mat. Tech. 2013. Vol. 135. No. 7. P. 031005(1–8).
8. Zhong Z., Gu Y., Yuan Y. et al. On the low cycle fatigue behaviour of a Ni-based superalloy containing high Co and Ti contents // Mater. Sci. Eng. 2012. Vol. A552. P. 434–443.
9. Gao G., Duan S., Zhang W. A study of high temperature low cycle fatigue life prediction for two superalloys // Journal of Engineering Research. 2015. Vol. 3. No. 1. P. 114–126.
10. Gao G., Duan S., Zhang W. Low cycle fatigue life prediction for GH 4133 at 550°C based on power-exponent function // Journal of Engineering Research. 2015. Vol. 3. No. 3. P. 111–124.
11. Maier G., Riedel H., Somsen C. Cyclic deformation and lifetime of Alloy 617B during isothermal low cycle fatigue // Int. J. Fatigue. 2013. Vol. 55. P. 126–135.
12. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravlenija razvitija tehnologij proizvodstva zharoprochnyh materialov dlja aviacionnogo dvigatelestroenija [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedenija. 2013. №3. S. 47–54.
13. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] // Aviacionnye materialy i tehnologii. 2012. №S.
S. 52–57.
14. Bakradze M.M., Ovsepyan S.V., Shugaev S.A., Letnikov M.N. Vliyanie rezhimov zakalki na strukturu i svojstva shtampovok diskov iz zharoprochnogo nikelevogo splava EK151-ID [The influence of quenching on structure and properties nickel-based superalloy EK151-ID forgings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №9. St. 01. Available at: http://www.viam-works.ru (accessed: October 12, 2017).
15. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Osobennosti legirovaniya i termicheskoj obrabotki zharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej novogo pokolenija [Features of alloying and thermal processing of heat resisting nickel alloys for disks of gas turbine engines of new generation] //Aviacionnye materialy i tehnologii. 2010. №2. S. 3–8.
16. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
17. Kablov E.N., Petrushin N.V., Svetlov I.L. Sovremennye litye nikelevye zharoprochnye splavy [Modern cast nickel hot strength alloys] // Nauchnye idei S.T. Kishkina i sovremennoe materialovedenie: tr. Mezhdunar. nauch.-tekhnich. konf. M.: VIAM, 2006. S. 39–55.
18. Stepnov M.N., Shavrin A.V. Statisticheskie metody obrabotki rezul'tatov mehanicheskih ispytanij: spravochnik [Statistical methods of processing of results of mechanical tests: directory]. M.: Mashinostroenie, 2005. 400 s.
6.
№5-6, 2017
УДК 678.06:629.7
Naumov I.S.1, Petrova A.P.1, Barinov D.Ya.1
THERMOGRAVIMETRIC ANALYSIS OF SEALING RUBBERS WITH THE LOWERED COMBUSTIBILITY IN THE ENVIRONMENT OF INERT GAS(ARGON)
Thermogravimetric analysis in argon environment of rubbers of sealing assignment, including the rubbers possessing lowered combustibility both in the initial condition, and with addition of finely dispersed flame retardants is carried out. Influence of used flame retardants on thermogravimetric characteristics of the received rubbers with the lowered combustibility is investigated.
Keywords: organic silicon and ethylenepropylene-diene rubbers, flame retardant, combustibility, aluminum hydroxide, magnesium hydroxide, decabromdiphenyl oxide, TGM-analysis.
Reference List
1. Kablov E.N. Materialy novogo pokolenija – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tehnologii. 2016. №2 (14). S. 16–21.
2. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Shestoy tekhnologicheskiy uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
4. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012. S. 346–348.
5. Kablov E.N. Aviatsionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviatsionnye materialy. Izbrannye trudy «VIAM» 1932–2002. M.: VIAM, 2002. S. 23–47.
6. Naumov I.S., Petrova A.P., Chajkun A.M. Reziny uplotnitel'nogo naznachenija i snizhenie ih gorjuchesti [Rubbers of sealing assignment and decrease in their combustibility] // Vse materialy. Jenciklopedicheskij spravochnik. 2013. №5. S. 28–35.
7. Chaikun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti morozostojkih rezin na osnove razlichnyh kauchukov [Features of old-resistant rubbers on the basis on different unvulcanized rubbers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №12. St. 04. Available at: http://www.viam-works.ru (accessed: December 05, 2017).
8. Naumov I.S., Petrova A.P., Eliseev O.A., Barbotko S.L. Eksperimentalnye issledovaniya v oblasti sozdaniya kremnijorganicheskih rezin s ponizhennoj goryuchestyu [Experimental research in the field of development of organic silicon rubbers with low flammability] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 09 Available at: http://www.viam-works.ru (accessed: December 05, 2017). DOI: 10.18577/2307-6046-2015-0-10-9-9.
9. Alifanov E.V., Chaykun A.М., Venediktova M.A., Naumov I.S. Osobennosti receptur rezin na osnove etilenpropilenovyh kauchukov i ih primenenie v izdeliyah specialnogo naznacheniya (obzor) [Specialties of rubber compounds recipes based on ethylene-propylene rubbers and their application in the articles for special purpose (review)] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 51–55. DOI: 10.18577/2071-9140-2015-0-2-51-55.
10. Naumov I.S., Petrova A.P., Barbot'ko S.L., Chajkun A.M. i dr. Cvetnye i chernye uplotnitel'nye reziny ponizhennoj gorjuchesti na osnove siloksanovyh kauchukov [Color and black sealing rubbers of the lowered combustibility on the basis of siloxane rubbers ] // Vse materialy. Jenciklopedicheskij spravochnik. 2017. №5. S. 24–31.
11. Naumov I.S., Petrova A.P., Barbotko S.L., Guliaev A.I. Reziny s ponizhennoi goriuchestiu na osnove etilenpropilen-dienovogo kauchuka [Rubbers with the lowered combustibility on basis of ethylenepropylene-diene rubber] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №2. St. 09. Available at: http://www.viam-works.ru (accessed: December 05, 2017). DOI: 10.18577/2307-6046-2016-0-2-9-9.
12. Naumov I.S., Marahovskij P.S., Petrova A.P., Barinov D.Ja. Termogravimetricheskij analiz uplotnitel'nyh rezin ponizhennoj gorjuchesti v srede vozduha [Thermogravimetric analysis of sealing rubbers with the lowered combustibility in the environment of air] // Novosti materi-alovedenija. Nauka i tehnika: jelektron. nauch.-tehnich. zhurn. 2017. №1 (25). St. 07. URL: http://www.materialsnews.ru (accessed: December 05, 2017).
13. Bolshoy spravochnik rezinshchika v 2 ch [The big reference book for specialist in rubbers in 2 p.]. M.: Tekhinform, 2012. 1385 s.
14. Tehnologija reziny: recepturostroenie i ispytanija. Per. s angl. [Technology of rubber: retsepturostroyeniye and tests. Trans. from Engl.] / pod red. Dzh.S. Dika. SPb.: Nauchnye osnovy i tehnologii, 2010. 620 s.
15. Gorenie, destrukcija i stabilizacija polimerov [Burning, destruktsiya and stabilization of polymers] / pod red. G.E. Zaikova. SPb.: Nauchnye osnovy i tehnologii, 2008. 422 s.
16. Normy letnoj godnosti samoletov transportnoj kategorii [Standards of the flight validity of airplanes of transport category]: AP-25: utv. Postanovleniem 28-j Sessii po aviacii i ispolzovaniju vozdushnogo prostranstva 11.12.2008. 3-e izd. s popravkami 1–6. M.: Aviaizdat, 2009. 274 s.
2. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Shestoy tekhnologicheskiy uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
4. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012. S. 346–348.
5. Kablov E.N. Aviatsionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviatsionnye materialy. Izbrannye trudy «VIAM» 1932–2002. M.: VIAM, 2002. S. 23–47.
6. Naumov I.S., Petrova A.P., Chajkun A.M. Reziny uplotnitel'nogo naznachenija i snizhenie ih gorjuchesti [Rubbers of sealing assignment and decrease in their combustibility] // Vse materialy. Jenciklopedicheskij spravochnik. 2013. №5. S. 28–35.
7. Chaikun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti morozostojkih rezin na osnove razlichnyh kauchukov [Features of old-resistant rubbers on the basis on different unvulcanized rubbers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №12. St. 04. Available at: http://www.viam-works.ru (accessed: December 05, 2017).
8. Naumov I.S., Petrova A.P., Eliseev O.A., Barbotko S.L. Eksperimentalnye issledovaniya v oblasti sozdaniya kremnijorganicheskih rezin s ponizhennoj goryuchestyu [Experimental research in the field of development of organic silicon rubbers with low flammability] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 09 Available at: http://www.viam-works.ru (accessed: December 05, 2017). DOI: 10.18577/2307-6046-2015-0-10-9-9.
9. Alifanov E.V., Chaykun A.М., Venediktova M.A., Naumov I.S. Osobennosti receptur rezin na osnove etilenpropilenovyh kauchukov i ih primenenie v izdeliyah specialnogo naznacheniya (obzor) [Specialties of rubber compounds recipes based on ethylene-propylene rubbers and their application in the articles for special purpose (review)] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 51–55. DOI: 10.18577/2071-9140-2015-0-2-51-55.
10. Naumov I.S., Petrova A.P., Barbot'ko S.L., Chajkun A.M. i dr. Cvetnye i chernye uplotnitel'nye reziny ponizhennoj gorjuchesti na osnove siloksanovyh kauchukov [Color and black sealing rubbers of the lowered combustibility on the basis of siloxane rubbers ] // Vse materialy. Jenciklopedicheskij spravochnik. 2017. №5. S. 24–31.
11. Naumov I.S., Petrova A.P., Barbotko S.L., Guliaev A.I. Reziny s ponizhennoi goriuchestiu na osnove etilenpropilen-dienovogo kauchuka [Rubbers with the lowered combustibility on basis of ethylenepropylene-diene rubber] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №2. St. 09. Available at: http://www.viam-works.ru (accessed: December 05, 2017). DOI: 10.18577/2307-6046-2016-0-2-9-9.
12. Naumov I.S., Marahovskij P.S., Petrova A.P., Barinov D.Ja. Termogravimetricheskij analiz uplotnitel'nyh rezin ponizhennoj gorjuchesti v srede vozduha [Thermogravimetric analysis of sealing rubbers with the lowered combustibility in the environment of air] // Novosti materi-alovedenija. Nauka i tehnika: jelektron. nauch.-tehnich. zhurn. 2017. №1 (25). St. 07. URL: http://www.materialsnews.ru (accessed: December 05, 2017).
13. Bolshoy spravochnik rezinshchika v 2 ch [The big reference book for specialist in rubbers in 2 p.]. M.: Tekhinform, 2012. 1385 s.
14. Tehnologija reziny: recepturostroenie i ispytanija. Per. s angl. [Technology of rubber: retsepturostroyeniye and tests. Trans. from Engl.] / pod red. Dzh.S. Dika. SPb.: Nauchnye osnovy i tehnologii, 2010. 620 s.
15. Gorenie, destrukcija i stabilizacija polimerov [Burning, destruktsiya and stabilization of polymers] / pod red. G.E. Zaikova. SPb.: Nauchnye osnovy i tehnologii, 2008. 422 s.
16. Normy letnoj godnosti samoletov transportnoj kategorii [Standards of the flight validity of airplanes of transport category]: AP-25: utv. Postanovleniem 28-j Sessii po aviacii i ispolzovaniju vozdushnogo prostranstva 11.12.2008. 3-e izd. s popravkami 1–6. M.: Aviaizdat, 2009. 274 s.
7.
№3-4, 2017
УДК 666.1.056:621.793.7
Aliev A.A.1
Research of material of reflectors of headlights of lighting devices for the purpose of determination of the causes of defect of «orange-peel» and development of technical solutions on his elimination
Researches of material of reflectors of headlights from the cold-rolled tape of steel 08Yu of lighting devices for the purpose of determination of the causes of defect of «orange-peel» in the course of their production are conducted by cold stamping. It is established that the non-uniform structure of the applied material 6–10 points is ferrite grain size the cause of defect. Technical solutions for elimination of defect of «orange-peel» are developed and introduced.
Keywords: reflector headlights, reflector, lighting engineering, «orange-peel» defect.
Reference List
1. Bolkhovitinov N.F. Svoistva i primenenie listovoi stali dlia kholodnoi shtampovki [Properties and application of sheet steel for cold forming]. M.: Mashgiz, 1952. 317 s.
2. Sverdenko V.P., Pasechnyi S.A. Metall dlia listovoi shtampovki [Metal for sheet metal stamping]. Minsk: Izd-vo AN BSSR, 1961. 273 s.
3. Guliaev A.P. Metallovedenie [Metallurgical science]. M.: Metallurgiia, 1966. 143 s.
4. Dedek V. Polosovaia stal dlia glubokoi vytiazhki [Flat steel for deep extract]. M.: Metallurgiia, 1970. 44 s.
5. Materialovedenie [Materials science] / pod red. B.N. Arzamasova. M.: Mashinostroenie, 1996.
165 s.
2. Sverdenko V.P., Pasechnyi S.A. Metall dlia listovoi shtampovki [Metal for sheet metal stamping]. Minsk: Izd-vo AN BSSR, 1961. 273 s.
3. Guliaev A.P. Metallovedenie [Metallurgical science]. M.: Metallurgiia, 1966. 143 s.
4. Dedek V. Polosovaia stal dlia glubokoi vytiazhki [Flat steel for deep extract]. M.: Metallurgiia, 1970. 44 s.
5. Materialovedenie [Materials science] / pod red. B.N. Arzamasova. M.: Mashinostroenie, 1996.
165 s.
8.
№2, 2017
УДК 629.7.023
Filonova E.V.1, Markov A.B.2
The high-current pulse electronic bunches for surface engineering ion-plasma coverings
In communication of modern aircraft equipment service conditions complication and toughening the problem of materials and the types of their processing providing along with high durability increase aviation engine the most loaded details and knots operational properties level (first of all blades and compressor and turbine disks) creation, became extremely actual. That is the most important problem of modern aviation engine-building.
The solution of this task is carried out with use of several approaches: perspective high-alloyed polycrystalline and single-crystal alloys development; manufacturing, formation and processing products and preparations modernization; details superficial processing new methods development and drawing on their surface of various protective coatings.
Recently the special attention is given to high-intensity methods of superficial engineering of rather wide nomenclature details development and extremely fast introduction of created on their basis technical p
Keywords: radiation by the high-current electronic beams, the condensed ion-plasma coverings, structural and phase condition, microstructure research.
Reference List
1. Pout Dzh.M., Foti G., Dzhekobs D.K. Modifitsirovanie i legirovanie poverkhnosti lazernymi, ionnymi i elektronnymi puchkami [Modifying and surface alloying laser, ionic and electronic bunches]. M.: Metallurgiia, 1987. 424 s.
2. Abroian I.A., Andronov A.K., Titov A.I. Fizicheskie osnovy elektronnoi i ionnoi tekhnologii [Physical bases of electronic and ionic technology]. M.: Vysshaia shkola, 1984. 320 s.
3. Shulov V.A., Nochovnaya N.A., Engelko V.I. The recycling of metals. Vienna, 1999. P. 92–101.
4. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their pro-cessing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
5. Kablov E.N. Sovremennye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern mate-rials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniia razvitiia konstruktsionnykh materialov i tekhnologii ikh pererabotki dlia aviatsionnykh dvigatelei nastoiashchego i budushchego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaia svarka. 2013. №10. S. 23–32.
8. Muboyadzhyan S.A., Lutsenko A.N., Aleksandrov D.A., Gorlov D.S. Issledovanie vozmozhnosti povysheniya sluzhebnyh harakteristik lopatok kompressora GTD metodom ionnogo modificirovaniya poverhnosti [Research of possibility of increase of office characteristics of compressor blades of GTE by method of ionic modifying of surface] // Trudy VIAM: elektron. nauch-tehnih. zhurn. 2013. №1. St. 02. Available at: http://viam-works.ru (accessed: April 01, 2016)
9. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
10. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnyayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] //Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
11. Matveev P.V., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Zashhitnye zharostojkie pokrytiya dlya splavov na osnove intermetallidov nikelya [High-temperature coatings for intermetallic nickel-based alloys] //Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
12. Shulov V.A., Paikin A.G., Bytsenko O.A. i dr. Razrabotka elektronno-luchevogo tekhnologicheskogo protsessa vosstanovleniia svoistv lopatok turbiny GTD iz splava ZhS26NK s zharostoikim pokrytiem NiCrAlY [Development of electron beam technological process of recovery of properties of turbine blades of GTE from alloy ZhS26NK with heat resisting covering of NiCrAlY] // Uprochniaiushchie tekhnologii i pokrytiia, 2010. №3 S. 34–38.
13. Shulov V.A., Teryaev D.A., Shirvanyants G.G. et al. Application of high-current pulsed electron beams for the restoration of properties of the blades of gas-turbine engines // Russian Journal of Non-Ferrous Metals. 2015. Vol. 56. No. 3. P. 333–338. DOI: 10.3103/S1067821215030190.
14. Paikin A.G., Krainikov A.V., Shulov B.A., Bytsenko O.A. i dr. Tekhnologicheskie osnovy modifitsirovaniia poverkhnosti detalei iz zharoprochnykh nikelevykh splavov s zharostoikim NiCrAlY pokrytiem s primeneniem silnotochnykh impulsnykh elektronnykh puchkov [Technological bases of modifying of surface of details from heat resisting nickel alloys with heat resisting NiCrAlY covering using high-current pulse electronic bunches] // Fizika i khimiia obrabotki materialov. 2008. №2. S. 56–60.
15. Bytsenko O.A., Filonova E.V., Markov A.B., Belova N.A. Vliianie oblucheniia silnotochnymi impulsnymi elektronnymi puchkami na poverkhnostnye sloi sovremennykh zharoprochnykh nikelevykh splavov s ionno-plazmennymi pokrytiiami razlichnogo sostava [Influence of radiation by high-current pulse electronic bunches on surface layers of modern heat resisting nickel alloys with ion-plasma coverings of different structure] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №6 (42). St. 10. Available at: http://viam-works.ru (accessed: July 17, 2016). DOI: 10.18577/2307-6046-2016-0-6-10-10.
2. Abroian I.A., Andronov A.K., Titov A.I. Fizicheskie osnovy elektronnoi i ionnoi tekhnologii [Physical bases of electronic and ionic technology]. M.: Vysshaia shkola, 1984. 320 s.
3. Shulov V.A., Nochovnaya N.A., Engelko V.I. The recycling of metals. Vienna, 1999. P. 92–101.
4. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their pro-cessing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
5. Kablov E.N. Sovremennye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern mate-rials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniia razvitiia konstruktsionnykh materialov i tekhnologii ikh pererabotki dlia aviatsionnykh dvigatelei nastoiashchego i budushchego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaia svarka. 2013. №10. S. 23–32.
8. Muboyadzhyan S.A., Lutsenko A.N., Aleksandrov D.A., Gorlov D.S. Issledovanie vozmozhnosti povysheniya sluzhebnyh harakteristik lopatok kompressora GTD metodom ionnogo modificirovaniya poverhnosti [Research of possibility of increase of office characteristics of compressor blades of GTE by method of ionic modifying of surface] // Trudy VIAM: elektron. nauch-tehnih. zhurn. 2013. №1. St. 02. Available at: http://viam-works.ru (accessed: April 01, 2016)
9. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
10. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnyayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] //Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
11. Matveev P.V., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Zashhitnye zharostojkie pokrytiya dlya splavov na osnove intermetallidov nikelya [High-temperature coatings for intermetallic nickel-based alloys] //Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
12. Shulov V.A., Paikin A.G., Bytsenko O.A. i dr. Razrabotka elektronno-luchevogo tekhnologicheskogo protsessa vosstanovleniia svoistv lopatok turbiny GTD iz splava ZhS26NK s zharostoikim pokrytiem NiCrAlY [Development of electron beam technological process of recovery of properties of turbine blades of GTE from alloy ZhS26NK with heat resisting covering of NiCrAlY] // Uprochniaiushchie tekhnologii i pokrytiia, 2010. №3 S. 34–38.
13. Shulov V.A., Teryaev D.A., Shirvanyants G.G. et al. Application of high-current pulsed electron beams for the restoration of properties of the blades of gas-turbine engines // Russian Journal of Non-Ferrous Metals. 2015. Vol. 56. No. 3. P. 333–338. DOI: 10.3103/S1067821215030190.
14. Paikin A.G., Krainikov A.V., Shulov B.A., Bytsenko O.A. i dr. Tekhnologicheskie osnovy modifitsirovaniia poverkhnosti detalei iz zharoprochnykh nikelevykh splavov s zharostoikim NiCrAlY pokrytiem s primeneniem silnotochnykh impulsnykh elektronnykh puchkov [Technological bases of modifying of surface of details from heat resisting nickel alloys with heat resisting NiCrAlY covering using high-current pulse electronic bunches] // Fizika i khimiia obrabotki materialov. 2008. №2. S. 56–60.
15. Bytsenko O.A., Filonova E.V., Markov A.B., Belova N.A. Vliianie oblucheniia silnotochnymi impulsnymi elektronnymi puchkami na poverkhnostnye sloi sovremennykh zharoprochnykh nikelevykh splavov s ionno-plazmennymi pokrytiiami razlichnogo sostava [Influence of radiation by high-current pulse electronic bunches on surface layers of modern heat resisting nickel alloys with ion-plasma coverings of different structure] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №6 (42). St. 10. Available at: http://viam-works.ru (accessed: July 17, 2016). DOI: 10.18577/2307-6046-2016-0-6-10-10.
9.
№2, 2017
УДК 620.179
Kochubey A.Ya.1, Treninkov I.A.1
Definition single crystals orientation parametres of nickel-base superalloys by diffractometer method
Definition Single crystals orientation parametres of nickel-base superalloys by diffractometer method is developed, including a mosaic structure, i.e. without application of Laue method. The method allows: to size up quantity of mosaic blocks in a crystal; to define crystallographic orientation of each block in the sample axes; to define misorientation blocks among themselves; to make samples with regulated crystallographic orientation for quantitative analysis of single crystals structure; to define a relationship orientation of single crystals substrate and coating, etc.
Keywords: single crystals, nickel-base superalloy, crystallographic orientation, mosaic structure.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]: sb. nauch.-inform. mater. 3-e izd. M.: VIAM, 2015. 720 s.
3. Shalin R.E., Svetlov I.L., Kachanov E.B. i dr. Monokristally nikelevykh zharoprochnykh splavov [Monocrystals of nickel hot strength alloys]. M.: Mashinostroenie, 1997. 336 s.
4. Kablov E.N., Petrushin N.V., Svetlov I.L. Sovremennye litye nikelevye zharoprochnye splavy [Modern cast nickel hot strength alloys] // Nauchnye idei S.T. Kishkina i sovremennoe materialovedenie: tr. Mezhdunar. nauch.-tekhnich. konf. M.: VIAM, 2006. S. 39–55.
5. Echin A.B., Bondarenko Yu.A. Osobennosti struktury i svojstva nikelevogo monokristallicheskogo splava, poluchennogo v usloviyah peremennogo temperaturnogo gradienta na fronte rosta [Structural features and properties of single-crystal Ni-based superalloy produced under conditions of variable temperature gradient on the solidification front] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 01. Available at: http://www.viam-works.ru (accessed: April 03, 2017). DOI: 10.18577/2307-6046-2015-0-8-1-1.
6. Iskhodzhanova I.V., Bondarenko Iu.A., Lapteva M.A. Otsenka struktury monokristallicheskogo zharoprochnogo nikelevogo splava, poluchennogo pri razlichnykh usloviiakh napravlennoi kristallizatsii, s ispolzovaniem metodov kolichestvennogo analiza videoizobrazhenii [Evaluation of the structure of monocrystalline Ni superalloys derived in different conditions of directional solidification using methods of quantitative analysis of video images] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №12. St. 06. Available at: http://www.viam-works.ru (accessed: April 03, 2017). DOI: 10.18577/2307-6046-2015-0-12-6-6.
7. Petrushin N.V., Visik E.M., Gorbovets M.A., Nazarkin R.M. Strukturno-fazovye kharakteristiki i mekhanicheskie svoistva monokristallov zharoprochnykh nikelevykh reniisoderzhashchikh splavov s intermetallidno-karbidnym uprochneniem [Structural phase characteristics and mechanical properties of monocrystals of heat resisting nickel reniye of containing alloys with intermetallidno-carbide hardening] // Metally, 2016. №4. S. 57–70.
8. Gerasimov V.V. Ot monokristallicheskih neohlazhdaemyh lopatok k lopatkam turbin s pronikayushhim (transpiracionnym) ohlazhdeniem, izgotovlennym po additivnym tehnologiyam (obzor po tehnologii litya monokristallicheskih lopatok GTD) [From single-crystal uncooled blades to turbines blades with penetration (transpiration) cooling made by additive technologies (review on technology of single-crystal GTE bladescasting)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10. St. 01. Available at: http://www.viam-works.ru (accessed: April 03, 2017). DOI: 10.18577/2307-6046-2016-0-10-1-1.
9. Naprienko S.A., Orlov M.R. Razrushenie monokristallicheskikh lopatok turbiny nazemnykh GTU [Damage of single-crystal turbine blades of GTP] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn., 2016. №2. St. 03. Available at: http://www.viam-works.ru (accessed: April 03, 2017). DOI: 10.18577/2307-6046-2016-0-2-3-3.
10. Kablov E.N., Toloraiia V.N., Ostroukhova G.A. Rostovaia struktura monokristallicheskikh otlivok iz nikelevykh zharoprochnykh splavov [Growing structure of single-crystal molding from nickel hot strength alloys] // Liteinye zharoprochnye splavy. Effekt S.T. Kishkina: nauch.-tekhn. sb. M.: Nauka, 2006. S. 219–245.
11. Toloraiia V.N., Kablov E.N., Demonis I.M. Tekhnologiia polucheniia monokristallicheskikh otlivok turbinnykh lopatok GTD zadannoi kristallograficheskoi orintatsii iz reniisoderzhashchikh zharoprochnykh splavov [Technology of receiving single-crystal molding of turbine blades of GTD of the set crystallographic orintatsiya from reniye of containing hot strength alloys] // Tam zhe. S. 206–218.
12. Gorelik S.S., Skakov Iu.A., Rastorguev L.N. Rentgenograficheskii i elektronno-opticheskii analiz: ucheb. posobie dlia vuzov [Radiographic and electron-optical analysis: the manual for higher education institutions]. 4-e izd. dop. i pererab. M.: MISIS, 2002. 360 s.
13. Shishkareva L.M., Kuzmina N.A. Obzor metodik opredeleniya kachestva struktury monokristallicheskih otlivok zharoprochnyh splavov [Review of methods for determining the quality of the structure of single-crystal superalloy castings] // Trudy VIAM: elektron. nauch.-tehni. zhurn. 2014. №1. St. 06. Available at: http://www.viam-works.ru (accessed: April 03, 2017).
14. Borodkina M.M., Spektor E.N. Rentgenovskii analiz tekstury metallov i splavov [X-ray analysis of structure of metals and alloys]. M: Metallurgiia, 1981. 272 s.
15. Treninkov I.A., Alekseev A.A., Zaitsev D.V., Filonova E.V. Issledovaniia fazovykh i strukturnykh izmenenii, a takzhe ostatochnykh napriazhenii v protsesse vysokotemperaturnoi polzuchesti v splave VZhM4 [Researches of phase and structural changes, and also residual stresses in the course of high-temperature creep in VZhM4 alloy]// Aviatsionnye materialy i tekhnologii, 2011. №2. S. 11–19.
2. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]: sb. nauch.-inform. mater. 3-e izd. M.: VIAM, 2015. 720 s.
3. Shalin R.E., Svetlov I.L., Kachanov E.B. i dr. Monokristally nikelevykh zharoprochnykh splavov [Monocrystals of nickel hot strength alloys]. M.: Mashinostroenie, 1997. 336 s.
4. Kablov E.N., Petrushin N.V., Svetlov I.L. Sovremennye litye nikelevye zharoprochnye splavy [Modern cast nickel hot strength alloys] // Nauchnye idei S.T. Kishkina i sovremennoe materialovedenie: tr. Mezhdunar. nauch.-tekhnich. konf. M.: VIAM, 2006. S. 39–55.
5. Echin A.B., Bondarenko Yu.A. Osobennosti struktury i svojstva nikelevogo monokristallicheskogo splava, poluchennogo v usloviyah peremennogo temperaturnogo gradienta na fronte rosta [Structural features and properties of single-crystal Ni-based superalloy produced under conditions of variable temperature gradient on the solidification front] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 01. Available at: http://www.viam-works.ru (accessed: April 03, 2017). DOI: 10.18577/2307-6046-2015-0-8-1-1.
6. Iskhodzhanova I.V., Bondarenko Iu.A., Lapteva M.A. Otsenka struktury monokristallicheskogo zharoprochnogo nikelevogo splava, poluchennogo pri razlichnykh usloviiakh napravlennoi kristallizatsii, s ispolzovaniem metodov kolichestvennogo analiza videoizobrazhenii [Evaluation of the structure of monocrystalline Ni superalloys derived in different conditions of directional solidification using methods of quantitative analysis of video images] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №12. St. 06. Available at: http://www.viam-works.ru (accessed: April 03, 2017). DOI: 10.18577/2307-6046-2015-0-12-6-6.
7. Petrushin N.V., Visik E.M., Gorbovets M.A., Nazarkin R.M. Strukturno-fazovye kharakteristiki i mekhanicheskie svoistva monokristallov zharoprochnykh nikelevykh reniisoderzhashchikh splavov s intermetallidno-karbidnym uprochneniem [Structural phase characteristics and mechanical properties of monocrystals of heat resisting nickel reniye of containing alloys with intermetallidno-carbide hardening] // Metally, 2016. №4. S. 57–70.
8. Gerasimov V.V. Ot monokristallicheskih neohlazhdaemyh lopatok k lopatkam turbin s pronikayushhim (transpiracionnym) ohlazhdeniem, izgotovlennym po additivnym tehnologiyam (obzor po tehnologii litya monokristallicheskih lopatok GTD) [From single-crystal uncooled blades to turbines blades with penetration (transpiration) cooling made by additive technologies (review on technology of single-crystal GTE bladescasting)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10. St. 01. Available at: http://www.viam-works.ru (accessed: April 03, 2017). DOI: 10.18577/2307-6046-2016-0-10-1-1.
9. Naprienko S.A., Orlov M.R. Razrushenie monokristallicheskikh lopatok turbiny nazemnykh GTU [Damage of single-crystal turbine blades of GTP] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn., 2016. №2. St. 03. Available at: http://www.viam-works.ru (accessed: April 03, 2017). DOI: 10.18577/2307-6046-2016-0-2-3-3.
10. Kablov E.N., Toloraiia V.N., Ostroukhova G.A. Rostovaia struktura monokristallicheskikh otlivok iz nikelevykh zharoprochnykh splavov [Growing structure of single-crystal molding from nickel hot strength alloys] // Liteinye zharoprochnye splavy. Effekt S.T. Kishkina: nauch.-tekhn. sb. M.: Nauka, 2006. S. 219–245.
11. Toloraiia V.N., Kablov E.N., Demonis I.M. Tekhnologiia polucheniia monokristallicheskikh otlivok turbinnykh lopatok GTD zadannoi kristallograficheskoi orintatsii iz reniisoderzhashchikh zharoprochnykh splavov [Technology of receiving single-crystal molding of turbine blades of GTD of the set crystallographic orintatsiya from reniye of containing hot strength alloys] // Tam zhe. S. 206–218.
12. Gorelik S.S., Skakov Iu.A., Rastorguev L.N. Rentgenograficheskii i elektronno-opticheskii analiz: ucheb. posobie dlia vuzov [Radiographic and electron-optical analysis: the manual for higher education institutions]. 4-e izd. dop. i pererab. M.: MISIS, 2002. 360 s.
13. Shishkareva L.M., Kuzmina N.A. Obzor metodik opredeleniya kachestva struktury monokristallicheskih otlivok zharoprochnyh splavov [Review of methods for determining the quality of the structure of single-crystal superalloy castings] // Trudy VIAM: elektron. nauch.-tehni. zhurn. 2014. №1. St. 06. Available at: http://www.viam-works.ru (accessed: April 03, 2017).
14. Borodkina M.M., Spektor E.N. Rentgenovskii analiz tekstury metallov i splavov [X-ray analysis of structure of metals and alloys]. M: Metallurgiia, 1981. 272 s.
15. Treninkov I.A., Alekseev A.A., Zaitsev D.V., Filonova E.V. Issledovaniia fazovykh i strukturnykh izmenenii, a takzhe ostatochnykh napriazhenii v protsesse vysokotemperaturnoi polzuchesti v splave VZhM4 [Researches of phase and structural changes, and also residual stresses in the course of high-temperature creep in VZhM4 alloy]// Aviatsionnye materialy i tekhnologii, 2011. №2. S. 11–19.
10.
№2, 2017
УДК 66.017
Interlaminar fracture toughness and fractography of epoxy and bismaleimide carbon composites
The work was focused on the definition of dominating energy dispersion mechanisms at delamination of woven carbon fiber polymer composites VKU-39 and BMI-3/3692 in the conditions of mode I (transverse tension) and mode II (shear). The results of structural and fractographic research of composites are presented in the work. It is shown that crack distribution in investigated composites can occur in the conditions of mode, distinct from the mode provided by the sample loading scheme.
Keywords: polymer composite, thermoset-thermoplastic blend, woven fabric, interlaminar fracture toughness, DCB, ENF, optical microscopy, fractography, scanning electron microscopy.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coalplastics and fibreglasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: May 15, 2016).
5. Raskutin A.E. Uglerodnye tkani dlia proizvodstva konstruktsii iz polimernykh kompozitsionnykh materialov [Carbon fabrics for production of designs from polymeric composite materials] // Materialovedenie. 2014. №8. S. 46–49.
6. Babaevskii P.G., Kulik S.G. Treshchinostoikost otverzhdennykh polimernykh kompozitsii [Crack firmness of otverzhdenny polymeric compositions]. M.: Khimiia, 1991. 336 s.
7. Finogenov G.N., Erasov V.S. Treshchinostoikost polimernykh kompozitov pri mezhsloinom otryve i sdvige [Crack firmness of polymeric composites at interlaminar separation and shift] // Aviatsionnye materialy i tekhnologii. 2003. №3. S. 62–67.
8. Guliaev A.I., Iakovlev N.O., Krylov V.D., Shurtakov S.V. Mikromekhanika razrusheniia stekloplastikov pri rassloenii po modam I i II [Microfracture mechanics of fibreglasses at stratification on modes of I and II] // Materialovedenie. 2016. №2. S. 13–22.
9. Iakovlev N.O., Erasov V.S., Krylov V.D., Popov Iu.O. Metody opredeleniia sdvigovykh kharakteristik polimernykh kompozitsionnykh materialov [Methods of definition of shift characteristics of polymeric composite materials] // Aviatsionnaia promyshlennost. 2014. №1. S. 20–23.
10. Erasov V.S., Krylov V.D., Panin S.V., Goncharov A.A. Ispytaniya polimernogo kompozitsionnogo materiala na udar padayushhim gruzom [Drop-weight impact testing of polymer composite material] // Aviacionnye materialy i tehnologii. 2013. №3. S. 60–64.
11. Guliaev A.I., Tenchurin T.Kh. Perspektivy primeneniia voloknistykh struktur, poluchennykh sposobom elektroformovaniia, dlia povysheniia udaro- i treshchinostoikosti polimernykh kompozitsionnykh materialov [Perspectives of application of the fibrous structures received in the way of electroformation, for increase of blow and crack of firmness of polymeric composite materials] // Konstruktsii iz kompozitsionnykh materialov. 2013. №3. C. 22–26.
12. Bolshakov V.A., Aleksashin V.M. Povyshenie ostatochnoj prochnosti pri szhatii posle nizkoskorostnogo udara ugleplastikov, izgotovlyaemyh infuzionnym metodom formovaniya [A way to increase the residual compression strength after low-speed impact of CFRP produced by vacuum infusion technology] // Aviacionnye materialy i tehnologii. 2013. №4. S. 47–50.
13. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Iu.M. Tsentry dlia klimaticheskikh ispytanii aviatsionnykh PKM [The centers for climatic tests of aviation PCM] // Aviatsionnaia promyshlennost. 2009. №4. S. 36–46.
14. Startsev O.V., Kablov E.N., Makhonkov A.Iu. Zakonomernosti perekhoda epoksidnykh sviazuiushchikh kompozitsionnykh materialov po dannym dinamicheskogo mekhanicheskogo analiza [Patterns of transition of epoxy binding composite materials according to the dynamic mechanical analysis] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 104–113.
15. Valevin E.O., Zelenina I.V., Marakhovskii P.S., Guliaev A.I., Bukharov S.V. Issledovanie vliianiia teplovlazhnostnogo vozdeistviia na ftalonitrilnuiu matritsu [Research of influence of warmly vlazhnostny impact on ftalonitrilny matrix] // Materialovedenie. 2015. №9. S. 15–19.
16. Perov N.S., Chutskova E.Iu., Guliaev A.I., Abramov D.V. Evoliutsiia struktury polimernoi matritsy v ugleplastike na osnove politsianurata i poliarilsulfona v uskorennykh klimaticheskikh ispytaniiakh [Evolution of structure of polymeric matrix in ugleplastike on basis politsianurata and poliarilsulfona in the accelerated climatic tests] // Materialovedenie. 2016. №4. S. 14–20.
17. Panina N.N., Chursova L.V., Babin A.N., Grebeneva T.A., Gurevich Ia.M. Osnovnye sposoby modifikatsii epoksidnykh polimernykh materialov v Rossii [The main ways of updating of epoxy polymeric materials in Russia] // Vse materialy. Entsiklopedicheskii spravochnik. 2014. №9. S. 10–17.
18. Gulyaev A.I., Zhuravleva P.L. Metodologicheskie voprosy analiza fazovoj morfologii materialov na osnove sinteticheskih smol, modificirovannyh termoplastami (obzor) [Methodological aspects of the phase morphology analysis in materials based on synthetic resins modified by thermoplastics (review)] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 09. Available at: http://viam-works.ru (accessed: May 15, 2016). DOI: 10.18577/2307-6046-2015-0-6-9-9.
19. Lobanov M.V., Guliaev A.I., Babin A.N. Povyshenie udaro- i treshchinostoikosti epoksidnykh reaktoplastov i kompozitov na ikh osnove s pomoshchiu dobavok termoplastov kak modifikatorov [Increase of blow and crack of firmness of epoxy thermosets and composites on their basis by means of additives of thermoplastics as modifiers] // Vysokomolekuliarnye soedineniia. Ser.: B. 2016. T. 58. №1. S. 3–15.
20. Tsotsis T.K. Interlayer toughening of composite materials // Polymer Composites. 2009. Vol. 30. No. 1. P. 70–86.
21. Pearson R.A., Yee A.F. Toughening mechanisms in thermoplastic-modified epoxies: 1. Modification using poly(phenylene oxide) // Polymer. 1993. Vol. 34. №17. P. 3658–3670.
22. Mimura K., Ito H., Fujioka H. Improvement of thermal and mechanical properties by control of morphologies in PES-modified epoxy resins // Polymer. 2000. Vol. 41. P. 4451–4459.
23. Hodgkin J.H., Simon G.P., Varley R.J. Thermoplastic toughening of epoxy resins: a critical review // Polymers for advanced technologies. 1998. Vol. 9. P. 3–10.
24. Merkulova Yu.I., Muhametov R.R. Nizkovyazkoe epoksidnoe svyazuyushhee dlya pererabotki metodom vakuumnoj infuzii [Development of a low-viscosity epoxy binder for processing by vacuum infusion] // Aviacionnye materialy i tehnologii. 2014. №1. S. 39–41. DOI: 10.18577/2071-9140-2014-0-1-39-41.
25. Mukhametov R.R., Shimkin A.A., Guliaev A.I., Kucherovskii A. I. Ftalonitrilnoe sviazuiushchee dlia termostoikikh kompozitov [Ftalonitrilnoye binding for heat-resistant composites] // Materialovedenie. 2015. №11. S. 48–53.
26. Iakovlev N.O., Lutsenko A.N., Artemeva I.V. Metody opredeleniia mezhsloevoi treshchinostoikosti sloistykh materialov [Methods of definition mezhsloyevy crack of firmness of layered materials] // Vse materialy. Entsiklopedicheskii spravochnik. Kommentarii k standartam, TU, sertifikatam. 2015. №10. S. 7–14.
27. Iakovlev N.O., Akolzin S.V., Shvets S.M. Opredelenie treshchinostoikosti polimernykh materialov [Definition of treshchinostoykost of polymeric materials] // Novosti materialovedeniia. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2014. № 4. St. 03. Available at: http://www.materalsnews.ru (accessed: May 15, 2016).
28. Krylov V.D., Iakovlev N.O., Kurganova Iu.A., Lashov O.A. Mezhsloevaia treshchinostoikost konstruktsionnykh polimernykh kompozitsionnykh materialov [Mezhsloyevy crack firmness of constructional polymeric composite materials] // Aviatsionnye materialy i tekhnologii. 2016. №1 (40). S. 79–85. DOI: 10.18577/2071-9140-2016-0-1-79-85.
29. Iakovlev N.O., Guliaev A.I., Krylov V.D., Shurtakov S.V. Mikrostruktura i svoistva konstruktsionnykh kompozitsionnykh materialov pri ispytanii na staticheskuiu mezhsloevuiu treshchinostoikost [Microstructure and properties of constructional composite materials when testing on static mezhsloyevy crack firmness] // Novosti materialovedeniia. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2016. №1. St. 09. Available at: http://www.materalsnews.ru (accessed: May 15, 2016).
30. Murakami A., Saunders D., Ooishi K. et al. Fracture behaviour of thermoplastic modified epoxy resins // Journal of Adhesion. 1992. Vol. 39. P. 227–242.
31. Deev I.S., Kobets L.P. Fraktografiia epoksidnykh polimerov [Fraktografiya of epoxy polymers] //Vysokomolekuliarnye soedineniia. Ser.: A. 1996. T. 38. №4. S. 627–633.
32. Bandyopadhyay S. Review of the microscopic and macroscopic aspects of fracture of unmodified and modified epoxy resins // Materials Science and Engineering A. 1990. Vol. A125. P. 157–184.
33. Iakovlev N.O., Guliaev A.I., Lashov O.A. Treshchinostoikost sloistykh polimernykh kompozitsionnykh materialov (obzor) [Crack firmness of layered polymeric composite materials (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №4 (40). St. 12. Available at: http://www.viam-works.ru (accessed: May 15, 2016) DOI: 10.185772307-6046-2016-0-4-12-12.
34. Di Liello V., Martuscelli E., Musto P., Ragosta G., Scarinzi G. Toughening of highly crosslinked thermosetting resins by blending with thermoplastic polyether imide // Die Angewandte Makromolekulare Chemie. 1993. №213. P. 93–111.
35. Kim J.-K., Mai Y.-W. Engineered Interfaces in Fiber Reinforced Composites. Elsevier, 1998. 486 р.
36. Ebeling T., Hiltner A., Baer E., Fraser I.M., Orton M.L. Delamination failure of a woven glass fiber composite // Journal of composite materials. 1997. Vol. 31. No. 13. P. 1318–1333.
37. Greenhalgh E.S. Failure analysis and fractography of polymer composites. Cambridge: Woodhead Publishing, 2008. 608 p.
2. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coalplastics and fibreglasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: May 15, 2016).
5. Raskutin A.E. Uglerodnye tkani dlia proizvodstva konstruktsii iz polimernykh kompozitsionnykh materialov [Carbon fabrics for production of designs from polymeric composite materials] // Materialovedenie. 2014. №8. S. 46–49.
6. Babaevskii P.G., Kulik S.G. Treshchinostoikost otverzhdennykh polimernykh kompozitsii [Crack firmness of otverzhdenny polymeric compositions]. M.: Khimiia, 1991. 336 s.
7. Finogenov G.N., Erasov V.S. Treshchinostoikost polimernykh kompozitov pri mezhsloinom otryve i sdvige [Crack firmness of polymeric composites at interlaminar separation and shift] // Aviatsionnye materialy i tekhnologii. 2003. №3. S. 62–67.
8. Guliaev A.I., Iakovlev N.O., Krylov V.D., Shurtakov S.V. Mikromekhanika razrusheniia stekloplastikov pri rassloenii po modam I i II [Microfracture mechanics of fibreglasses at stratification on modes of I and II] // Materialovedenie. 2016. №2. S. 13–22.
9. Iakovlev N.O., Erasov V.S., Krylov V.D., Popov Iu.O. Metody opredeleniia sdvigovykh kharakteristik polimernykh kompozitsionnykh materialov [Methods of definition of shift characteristics of polymeric composite materials] // Aviatsionnaia promyshlennost. 2014. №1. S. 20–23.
10. Erasov V.S., Krylov V.D., Panin S.V., Goncharov A.A. Ispytaniya polimernogo kompozitsionnogo materiala na udar padayushhim gruzom [Drop-weight impact testing of polymer composite material] // Aviacionnye materialy i tehnologii. 2013. №3. S. 60–64.
11. Guliaev A.I., Tenchurin T.Kh. Perspektivy primeneniia voloknistykh struktur, poluchennykh sposobom elektroformovaniia, dlia povysheniia udaro- i treshchinostoikosti polimernykh kompozitsionnykh materialov [Perspectives of application of the fibrous structures received in the way of electroformation, for increase of blow and crack of firmness of polymeric composite materials] // Konstruktsii iz kompozitsionnykh materialov. 2013. №3. C. 22–26.
12. Bolshakov V.A., Aleksashin V.M. Povyshenie ostatochnoj prochnosti pri szhatii posle nizkoskorostnogo udara ugleplastikov, izgotovlyaemyh infuzionnym metodom formovaniya [A way to increase the residual compression strength after low-speed impact of CFRP produced by vacuum infusion technology] // Aviacionnye materialy i tehnologii. 2013. №4. S. 47–50.
13. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Iu.M. Tsentry dlia klimaticheskikh ispytanii aviatsionnykh PKM [The centers for climatic tests of aviation PCM] // Aviatsionnaia promyshlennost. 2009. №4. S. 36–46.
14. Startsev O.V., Kablov E.N., Makhonkov A.Iu. Zakonomernosti perekhoda epoksidnykh sviazuiushchikh kompozitsionnykh materialov po dannym dinamicheskogo mekhanicheskogo analiza [Patterns of transition of epoxy binding composite materials according to the dynamic mechanical analysis] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 104–113.
15. Valevin E.O., Zelenina I.V., Marakhovskii P.S., Guliaev A.I., Bukharov S.V. Issledovanie vliianiia teplovlazhnostnogo vozdeistviia na ftalonitrilnuiu matritsu [Research of influence of warmly vlazhnostny impact on ftalonitrilny matrix] // Materialovedenie. 2015. №9. S. 15–19.
16. Perov N.S., Chutskova E.Iu., Guliaev A.I., Abramov D.V. Evoliutsiia struktury polimernoi matritsy v ugleplastike na osnove politsianurata i poliarilsulfona v uskorennykh klimaticheskikh ispytaniiakh [Evolution of structure of polymeric matrix in ugleplastike on basis politsianurata and poliarilsulfona in the accelerated climatic tests] // Materialovedenie. 2016. №4. S. 14–20.
17. Panina N.N., Chursova L.V., Babin A.N., Grebeneva T.A., Gurevich Ia.M. Osnovnye sposoby modifikatsii epoksidnykh polimernykh materialov v Rossii [The main ways of updating of epoxy polymeric materials in Russia] // Vse materialy. Entsiklopedicheskii spravochnik. 2014. №9. S. 10–17.
18. Gulyaev A.I., Zhuravleva P.L. Metodologicheskie voprosy analiza fazovoj morfologii materialov na osnove sinteticheskih smol, modificirovannyh termoplastami (obzor) [Methodological aspects of the phase morphology analysis in materials based on synthetic resins modified by thermoplastics (review)] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 09. Available at: http://viam-works.ru (accessed: May 15, 2016). DOI: 10.18577/2307-6046-2015-0-6-9-9.
19. Lobanov M.V., Guliaev A.I., Babin A.N. Povyshenie udaro- i treshchinostoikosti epoksidnykh reaktoplastov i kompozitov na ikh osnove s pomoshchiu dobavok termoplastov kak modifikatorov [Increase of blow and crack of firmness of epoxy thermosets and composites on their basis by means of additives of thermoplastics as modifiers] // Vysokomolekuliarnye soedineniia. Ser.: B. 2016. T. 58. №1. S. 3–15.
20. Tsotsis T.K. Interlayer toughening of composite materials // Polymer Composites. 2009. Vol. 30. No. 1. P. 70–86.
21. Pearson R.A., Yee A.F. Toughening mechanisms in thermoplastic-modified epoxies: 1. Modification using poly(phenylene oxide) // Polymer. 1993. Vol. 34. №17. P. 3658–3670.
22. Mimura K., Ito H., Fujioka H. Improvement of thermal and mechanical properties by control of morphologies in PES-modified epoxy resins // Polymer. 2000. Vol. 41. P. 4451–4459.
23. Hodgkin J.H., Simon G.P., Varley R.J. Thermoplastic toughening of epoxy resins: a critical review // Polymers for advanced technologies. 1998. Vol. 9. P. 3–10.
24. Merkulova Yu.I., Muhametov R.R. Nizkovyazkoe epoksidnoe svyazuyushhee dlya pererabotki metodom vakuumnoj infuzii [Development of a low-viscosity epoxy binder for processing by vacuum infusion] // Aviacionnye materialy i tehnologii. 2014. №1. S. 39–41. DOI: 10.18577/2071-9140-2014-0-1-39-41.
25. Mukhametov R.R., Shimkin A.A., Guliaev A.I., Kucherovskii A. I. Ftalonitrilnoe sviazuiushchee dlia termostoikikh kompozitov [Ftalonitrilnoye binding for heat-resistant composites] // Materialovedenie. 2015. №11. S. 48–53.
26. Iakovlev N.O., Lutsenko A.N., Artemeva I.V. Metody opredeleniia mezhsloevoi treshchinostoikosti sloistykh materialov [Methods of definition mezhsloyevy crack of firmness of layered materials] // Vse materialy. Entsiklopedicheskii spravochnik. Kommentarii k standartam, TU, sertifikatam. 2015. №10. S. 7–14.
27. Iakovlev N.O., Akolzin S.V., Shvets S.M. Opredelenie treshchinostoikosti polimernykh materialov [Definition of treshchinostoykost of polymeric materials] // Novosti materialovedeniia. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2014. № 4. St. 03. Available at: http://www.materalsnews.ru (accessed: May 15, 2016).
28. Krylov V.D., Iakovlev N.O., Kurganova Iu.A., Lashov O.A. Mezhsloevaia treshchinostoikost konstruktsionnykh polimernykh kompozitsionnykh materialov [Mezhsloyevy crack firmness of constructional polymeric composite materials] // Aviatsionnye materialy i tekhnologii. 2016. №1 (40). S. 79–85. DOI: 10.18577/2071-9140-2016-0-1-79-85.
29. Iakovlev N.O., Guliaev A.I., Krylov V.D., Shurtakov S.V. Mikrostruktura i svoistva konstruktsionnykh kompozitsionnykh materialov pri ispytanii na staticheskuiu mezhsloevuiu treshchinostoikost [Microstructure and properties of constructional composite materials when testing on static mezhsloyevy crack firmness] // Novosti materialovedeniia. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2016. №1. St. 09. Available at: http://www.materalsnews.ru (accessed: May 15, 2016).
30. Murakami A., Saunders D., Ooishi K. et al. Fracture behaviour of thermoplastic modified epoxy resins // Journal of Adhesion. 1992. Vol. 39. P. 227–242.
31. Deev I.S., Kobets L.P. Fraktografiia epoksidnykh polimerov [Fraktografiya of epoxy polymers] //Vysokomolekuliarnye soedineniia. Ser.: A. 1996. T. 38. №4. S. 627–633.
32. Bandyopadhyay S. Review of the microscopic and macroscopic aspects of fracture of unmodified and modified epoxy resins // Materials Science and Engineering A. 1990. Vol. A125. P. 157–184.
33. Iakovlev N.O., Guliaev A.I., Lashov O.A. Treshchinostoikost sloistykh polimernykh kompozitsionnykh materialov (obzor) [Crack firmness of layered polymeric composite materials (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №4 (40). St. 12. Available at: http://www.viam-works.ru (accessed: May 15, 2016) DOI: 10.185772307-6046-2016-0-4-12-12.
34. Di Liello V., Martuscelli E., Musto P., Ragosta G., Scarinzi G. Toughening of highly crosslinked thermosetting resins by blending with thermoplastic polyether imide // Die Angewandte Makromolekulare Chemie. 1993. №213. P. 93–111.
35. Kim J.-K., Mai Y.-W. Engineered Interfaces in Fiber Reinforced Composites. Elsevier, 1998. 486 р.
36. Ebeling T., Hiltner A., Baer E., Fraser I.M., Orton M.L. Delamination failure of a woven glass fiber composite // Journal of composite materials. 1997. Vol. 31. No. 13. P. 1318–1333.
37. Greenhalgh E.S. Failure analysis and fractography of polymer composites. Cambridge: Woodhead Publishing, 2008. 608 p.
11.
№6, 2016
УДК 678.747.2
Andreeva N.P.1, Pavlov M.R.1, Shvedkova A.K.1, Nikolaev E.V.1
Climatic tests according to resistance of materials to conditions of sea Arctic and Subarctic climates
The study of climate resistance of non-metallic polymer materials for complex technical systems and structures used in the cold climate of the Arctic zone, is an important issue in the selection and development of the material. The materials should have the persistence of physical and mechanical properties not only in conditions of low temperatures and temperature changes, but to be resistant to high humidity and the influence of maritime climate.
As part of the research climate resistance of materials for Arctic operation conditions for the grant program of the Russian Science Foundation (рroject №14-33-00032) has developed the technique of assessment of climatic resistance of non-metallic materials for storage and operation in the area of the Arctic and subarctic climates (MM1.595-20-470–2015). The technique allows researching the influence of the alleged climate of storage and operation factors on the structure changes and strength properties of the materials. And also can be used
Keywords: climatic tests, non-metallic polymeric materials, Arctic climate.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Osnovy gosudarstvennoy politiki Rossiyskoy Federatsii v Arktike na period do 2020 goda i dalneyshuyu perspektivu: utv. Prikazom Prezidenta Rossiyskoy Federatsii ot 18 sentyabrya 2008 g., №Pr-1969 [Bases of state policy of the Russian Federation in the Arctic for the period till 2020 and further perspective: utv. The order of the President of the Russian Federation from September 18, 2008, No. Pr-1969] // Rossiyskaya gazeta. Stolichnyy vypusk. №4877 ot 27.03.2009 g. S. 3–4.
3. Strategiya razvitiya arkticheskoy zony Rossiyskoy Federatsii i obespecheniya natsionalnoy bezopasnosti na period do 2020 goda: utv. Prikazom Prezidenta Rossiyskoy Federatsii ot 8 fevralya 2013 g., №Pr-232 [Strategy of development of the Arctic zone of the Russian Federation and ensuring national security for the period till 2020: utv. The order of the President of the Russian Federation from On February 8, 2013, No. Pr-232] [elektronnyy resurs]. Available at: http:// www/government.ru/docs/22846 (accessed: February 01, 2016).
4. Dynkin A.A., Vernikovskiy V.A., Dobretsov N.L., Buznik V.M., Kablov E.N. i dr. Nauchno-tekhnicheskie problemy osvoeniya Arktiki [Scientific and technical problems of development of the Arctic]. M.: Nauka, 2015. 490 s.
5. Kablov E.N., Kirillov V.N., Zhilikov V.P., Zhirnov A.D. Izuchenie klimaticheskoy stoykosti aviatsionnykh materialov // Puti obedineniya potentsiala nauki v interesakh resheniya aktualnykh fundamentalnykh i prikladnykh problem strategicheskogo razvitiya subektov RF [Studying of climatic firmness of aviation materials//Ways of association of potential of science in interests of the solution of actual fundamental and applied problems of strategic development of subjects of the Russian Federation] / SO RAN. Yakutsk, 2003. S. 191–196.
6. Kirillov V.N. Issledovanie klimaticheskoy stoykosti kompozitsionnykh nemetallicheskikh materialov [Research of climatic firmness of composite non-metallic materials] // Aktualnye voprosy aviatsionnogo materialovedeniya: sb. tez. dokl. Mezhdunar. nauch.-tekhnich. konf. M.: VIAM, 2007. S. 133–134.
7. Pavlov N.N. Starenie plastmass v estestvennykh i iskusstvennykh usloviyakh [Aging of plastic in natural and simulated conditions]. M.: Khimiya, 1982. 224 s.
8. Buznik V.M., Kablov E.N., Koshurina A.A. Materialy dlya slozhnykh tekhnicheskikh ustroystv arkticheskogo primeneniya [Materials for difficult engineering devices of the Arctic application] // Nauchno-tekhnicheskie problemy osvoeniya Arktiki. M.: Nauka, 2015. S. 275–285.
9. Petrova A.P., Lukina N.F., Sharova I.A., Kutsevich K.E., Buznik V.M. Rabotosposobnost' kleev i materialov na ikh osnove v usloviyakh, blizkikh k pribrezhnym usloviyam Arktiki [Operability of glues and materials on their basis in the conditions close to coastal conditions of the Arctic] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch-tekhnich. zhurn. 2016. №2. St. 01. Available at: http://www.materialsnews.ru (accessed: February 01, 2016).
10. Kirillov V.N., Efimov V.A. Metodika provedeniya i obrabotki rezultatov naturnykh ispytaniy nemetallicheskikh materialov [Technique of carrying out and processing of results of natural tests of non-metallic materials] // Klei, germetiki, tekhnologii. 2007. №1. S. 26–31.
11. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Yu.M. Tsentry dlya klimaticheskikh ispytaniy aviatsionnykh PKM [The centers for climatic tests of aviation PCM] // Aviatsionnaya promyshlennost. 2009. №4. S. 36–46.
12. Shvedkova A.K., Petrova A.P., Buznik V.M. Klimaticheskaya stoykost kompozitsionnykh materialov na osnove kleevykh prepregov v arkticheskikh usloviyakh [Climatic firmness of composite materials on the basis of glue prepregs in the Arctic conditions] // Klei. Germetiki. Tekhnologii. 2016. №1. C. 19–25.
13. Kirillov V.N., Golikov N.I., Popov V.N., Efimov V.A., Barbotko S.L. Provedenie naturnykh ispytaniy materialov v usloviyakh kholodnogo klimata Yakutii [Carrying out natural tests of materials in the conditions of frigid climate of Yakutia] // Sb. dokl. III Evraziyskogo simpoziuma po problemam prochnosti ma-terialov i mashin dlya regionov kholodnogo klimata. Yakutsk, 2006. S. 57–60.
14. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grash-chenkov D.V. Kompleksnoe issledovanie vozdeystviya klimaticheskikh i ekspluatatsionnykh faktorov na novoe pokolenie epoksidnogo svyazuyushchego i polimernykh kompozitsionnykh materialov na ego osnove. Chast 4. Naturnye klimaticheskie ispytaniya polimernykh kompozitsionnykh materialov na osnove epoksidnoy matritsy [Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 4. Natural climatic tests of polymeric composite materials on the basis of epoxy matrix] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №6. St. 11. Available at: http://www.viam-works.ru (accessed: February 01, 2016). DOI: 10.18577/2307-6046-2016-0-6-11-11.
15. Pavlov M.R., Nikolaev E.V., Andreeva N.P., Barbotko S.L. K voprosu o metodike otsenki stoykosti polimernykh materialov k vozdeystviyu solnechnogo izlucheniya (obzor) [To question of technique of assessment of firmness of polymeric materials to influence of solar radiation (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №7. St. 11. Available at: http://www.viam-works.ru (accessed: February 01, 2016). DOI: 10.18577/2307-6046-2016-0-7-11-11.
16. Kablov E.N., Lebedev M.P., Startsev O.V., Golikov N.I. Klimatiches-kie ispytaniya materialov, elementov konstruktsiy, tekhniki i oborudovaniya v usloviyakh ekstremalno nizkikh temperatur [Climatic tests of materials, elements of designs, equipment and the equipment in the conditions of extremely low temperatures] // Tr. VI Evraziyskogo simpoziuma po problemam prochnosti materialov i mashin dlya regionov kholodnogo klimata «EURASTRENCOLD-2013». 2013. S. 5–7.
17. Buznik V.M., Kablov E.N. Tekhnologii polucheniya i adaptatsii mate-rialov dlya primeneniya v Arktike [Technologies of receiving and adaptation of materials for application in the Arctic] // V Mezhdunarodnaya konferentsiya-shkola po khimicheskoy tekhnologii: sb. tez. dokl. satellitnoy konf. KhKh Mende-leevskogo sezda po obshchey i prikladnoy khimii. 2016. S. 9–10.
18. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatatsii aviatsionnoy tekhniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviatsionnye materialy i tekhnologii. 2001. №1. S. 3–8.
19. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R. Kompleksnoe issledovanie vozdeystviya klimaticheskikh i ekspluatatsionnykh faktorov na novoe pokolenie epoksidnogo svyazuyushchego i polimernykh kompozitsionnykh materialov na ego osnove. Chast 1. Issledovanie vliyaniya sorbirovannoy vlagi na epoksidnuyu matritsu i ugleplastik na ee osnove [Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 1. Research of influence of sorbirovanny moisture on epoxy matrix and carbon plastics on its basis] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №12. St. 11. Available at: http://www.viam-works.ru (accessed: February 01, 2016). DOI: 10.18577/2307-6046-2015-0-12-11-11.
20. Aviatsionnye materialy: spravochnik v 13 t. [Aviation materials: the directory in 13 v.] / pod obshch. red. E.N. Kablova. 7-e izd., pererab. i dop. M.: VIAM, 2015. T. 13: Klimaticheskaya i mikrobiologicheskaya stoykost' nemetallicheskikh materialov. 270 s.
2. Osnovy gosudarstvennoy politiki Rossiyskoy Federatsii v Arktike na period do 2020 goda i dalneyshuyu perspektivu: utv. Prikazom Prezidenta Rossiyskoy Federatsii ot 18 sentyabrya 2008 g., №Pr-1969 [Bases of state policy of the Russian Federation in the Arctic for the period till 2020 and further perspective: utv. The order of the President of the Russian Federation from September 18, 2008, No. Pr-1969] // Rossiyskaya gazeta. Stolichnyy vypusk. №4877 ot 27.03.2009 g. S. 3–4.
3. Strategiya razvitiya arkticheskoy zony Rossiyskoy Federatsii i obespecheniya natsionalnoy bezopasnosti na period do 2020 goda: utv. Prikazom Prezidenta Rossiyskoy Federatsii ot 8 fevralya 2013 g., №Pr-232 [Strategy of development of the Arctic zone of the Russian Federation and ensuring national security for the period till 2020: utv. The order of the President of the Russian Federation from On February 8, 2013, No. Pr-232] [elektronnyy resurs]. Available at: http:// www/government.ru/docs/22846 (accessed: February 01, 2016).
4. Dynkin A.A., Vernikovskiy V.A., Dobretsov N.L., Buznik V.M., Kablov E.N. i dr. Nauchno-tekhnicheskie problemy osvoeniya Arktiki [Scientific and technical problems of development of the Arctic]. M.: Nauka, 2015. 490 s.
5. Kablov E.N., Kirillov V.N., Zhilikov V.P., Zhirnov A.D. Izuchenie klimaticheskoy stoykosti aviatsionnykh materialov // Puti obedineniya potentsiala nauki v interesakh resheniya aktualnykh fundamentalnykh i prikladnykh problem strategicheskogo razvitiya subektov RF [Studying of climatic firmness of aviation materials//Ways of association of potential of science in interests of the solution of actual fundamental and applied problems of strategic development of subjects of the Russian Federation] / SO RAN. Yakutsk, 2003. S. 191–196.
6. Kirillov V.N. Issledovanie klimaticheskoy stoykosti kompozitsionnykh nemetallicheskikh materialov [Research of climatic firmness of composite non-metallic materials] // Aktualnye voprosy aviatsionnogo materialovedeniya: sb. tez. dokl. Mezhdunar. nauch.-tekhnich. konf. M.: VIAM, 2007. S. 133–134.
7. Pavlov N.N. Starenie plastmass v estestvennykh i iskusstvennykh usloviyakh [Aging of plastic in natural and simulated conditions]. M.: Khimiya, 1982. 224 s.
8. Buznik V.M., Kablov E.N., Koshurina A.A. Materialy dlya slozhnykh tekhnicheskikh ustroystv arkticheskogo primeneniya [Materials for difficult engineering devices of the Arctic application] // Nauchno-tekhnicheskie problemy osvoeniya Arktiki. M.: Nauka, 2015. S. 275–285.
9. Petrova A.P., Lukina N.F., Sharova I.A., Kutsevich K.E., Buznik V.M. Rabotosposobnost' kleev i materialov na ikh osnove v usloviyakh, blizkikh k pribrezhnym usloviyam Arktiki [Operability of glues and materials on their basis in the conditions close to coastal conditions of the Arctic] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch-tekhnich. zhurn. 2016. №2. St. 01. Available at: http://www.materialsnews.ru (accessed: February 01, 2016).
10. Kirillov V.N., Efimov V.A. Metodika provedeniya i obrabotki rezultatov naturnykh ispytaniy nemetallicheskikh materialov [Technique of carrying out and processing of results of natural tests of non-metallic materials] // Klei, germetiki, tekhnologii. 2007. №1. S. 26–31.
11. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Yu.M. Tsentry dlya klimaticheskikh ispytaniy aviatsionnykh PKM [The centers for climatic tests of aviation PCM] // Aviatsionnaya promyshlennost. 2009. №4. S. 36–46.
12. Shvedkova A.K., Petrova A.P., Buznik V.M. Klimaticheskaya stoykost kompozitsionnykh materialov na osnove kleevykh prepregov v arkticheskikh usloviyakh [Climatic firmness of composite materials on the basis of glue prepregs in the Arctic conditions] // Klei. Germetiki. Tekhnologii. 2016. №1. C. 19–25.
13. Kirillov V.N., Golikov N.I., Popov V.N., Efimov V.A., Barbotko S.L. Provedenie naturnykh ispytaniy materialov v usloviyakh kholodnogo klimata Yakutii [Carrying out natural tests of materials in the conditions of frigid climate of Yakutia] // Sb. dokl. III Evraziyskogo simpoziuma po problemam prochnosti ma-terialov i mashin dlya regionov kholodnogo klimata. Yakutsk, 2006. S. 57–60.
14. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grash-chenkov D.V. Kompleksnoe issledovanie vozdeystviya klimaticheskikh i ekspluatatsionnykh faktorov na novoe pokolenie epoksidnogo svyazuyushchego i polimernykh kompozitsionnykh materialov na ego osnove. Chast 4. Naturnye klimaticheskie ispytaniya polimernykh kompozitsionnykh materialov na osnove epoksidnoy matritsy [Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 4. Natural climatic tests of polymeric composite materials on the basis of epoxy matrix] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №6. St. 11. Available at: http://www.viam-works.ru (accessed: February 01, 2016). DOI: 10.18577/2307-6046-2016-0-6-11-11.
15. Pavlov M.R., Nikolaev E.V., Andreeva N.P., Barbotko S.L. K voprosu o metodike otsenki stoykosti polimernykh materialov k vozdeystviyu solnechnogo izlucheniya (obzor) [To question of technique of assessment of firmness of polymeric materials to influence of solar radiation (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №7. St. 11. Available at: http://www.viam-works.ru (accessed: February 01, 2016). DOI: 10.18577/2307-6046-2016-0-7-11-11.
16. Kablov E.N., Lebedev M.P., Startsev O.V., Golikov N.I. Klimatiches-kie ispytaniya materialov, elementov konstruktsiy, tekhniki i oborudovaniya v usloviyakh ekstremalno nizkikh temperatur [Climatic tests of materials, elements of designs, equipment and the equipment in the conditions of extremely low temperatures] // Tr. VI Evraziyskogo simpoziuma po problemam prochnosti materialov i mashin dlya regionov kholodnogo klimata «EURASTRENCOLD-2013». 2013. S. 5–7.
17. Buznik V.M., Kablov E.N. Tekhnologii polucheniya i adaptatsii mate-rialov dlya primeneniya v Arktike [Technologies of receiving and adaptation of materials for application in the Arctic] // V Mezhdunarodnaya konferentsiya-shkola po khimicheskoy tekhnologii: sb. tez. dokl. satellitnoy konf. KhKh Mende-leevskogo sezda po obshchey i prikladnoy khimii. 2016. S. 9–10.
18. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatatsii aviatsionnoy tekhniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviatsionnye materialy i tekhnologii. 2001. №1. S. 3–8.
19. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R. Kompleksnoe issledovanie vozdeystviya klimaticheskikh i ekspluatatsionnykh faktorov na novoe pokolenie epoksidnogo svyazuyushchego i polimernykh kompozitsionnykh materialov na ego osnove. Chast 1. Issledovanie vliyaniya sorbirovannoy vlagi na epoksidnuyu matritsu i ugleplastik na ee osnove [Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 1. Research of influence of sorbirovanny moisture on epoxy matrix and carbon plastics on its basis] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №12. St. 11. Available at: http://www.viam-works.ru (accessed: February 01, 2016). DOI: 10.18577/2307-6046-2015-0-12-11-11.
20. Aviatsionnye materialy: spravochnik v 13 t. [Aviation materials: the directory in 13 v.] / pod obshch. red. E.N. Kablova. 7-e izd., pererab. i dop. M.: VIAM, 2015. T. 13: Klimaticheskaya i mikrobiologicheskaya stoykost' nemetallicheskikh materialov. 270 s.
12.
№5, 2016
УДК 621.763
Sokolov E.G.1, Ozolin A.V.1, Kozachenko A.D.2
Influence of cobalt on the process of brazing of diamond-abrasive tools by Sn–Cu–Co–W composite brazes
It was researched the influence of cobalt powder on the viscosity of composite brazes
Sn–Cu–Co–W and on the hot cracking of brazed diamond-impregnated layers.
The object of the study was the process of brazing of shaped diamond-abrasive tools by composite brazes Sn–Cu–Co–W. Purpose – to determinate the optimal content of cobalt powder in the composite brazing alloy, ensuring the formation of uniform diamond-bearing coatings on complex shaped surfaces of diamond tools. For experimental studies was prepared the brazing paste Sn–Cu–Co–W with a cobalt powder content of 20 to 34% (wt.). Brazes without diamonds were applied to the cylindrical rollers with a diameter of 20 mm, made of steel St.3. The mixture of braze and AS150 diamonds (400/315 micron grain size) containing 25% of diamonds (by volume) was applied to the shaped rollers with a maximum diameter of 85 mm, made of steel 45. Samples were dried and annealed in vacuum at 820°C for 40 minutes exposure. It is found that with increas
Keywords: cobalt, composite brazing, viscosity, diamond tool.
Reference List
1. Orlov A.M. Dobycha i obrabotka prirodnogo kamnya [Production and processing of natural stone]. M.: Stroyizdat, 1977. 351 s.
2. Miflig D.M., Levin M.D. Almaznye fasonnye roliki dlya shlifovaniya arkhitekturnykh izdeliy iz mramora i granita [Diamond shaped rollers for grinding of architectural products from marble and granite] // Instumentalniy svit. 1997. №2. S. 12.
3. Almaznye fasonnye roliki dlya shlifovaniya kamnya proizvodstva «ALKON BEVERS» [Diamond shaped rollers for grinding of stone of production "ALKON BEVERS"] // Instumentalniy svit. 2002. №2. S. 8.
4. Diamond tools for the stone industry. Diamant Boart, 2008. 43 p.
5. Trenker A., Seidemann H. High-vacuum brazing of diamond tools // Industrial Diamond Review. 2002. Vol. 62 (1). P. 49–51.
6. Lee C.H., Ham J.O., Song M.S., Lee C.H. The interfacial reaction between diamond grit and Ni-based brazing filler metal // Materials transactions. 2007. Vol. 48 (4). P. 889–891.
7. Sposob polucheniya abrazivnogo instrumenta iz sverkhtverdykh materialov [Way of receiving abrasive tool from superhard materials]: pat. 2457935 Ros. Federatsiya; opubl. 10.08.12. Byul. №22.
8. Sokolov E.G., Artemev V.P., Kozachenko A.D. Formirovanie metallicheskoy svyazki almazno-abrazivnogo instrumenta pri kompozitsionnoy payke [Forming of metal linking of diamond abrasive tool at the composition soldering] // Tekhnologiya metallov. 2012. №12. S. 35–37.
9. Kozachenko A.D., Sokolov E.G. Vliyanie tugoplavkikh napolniteley na protsess kompozitsionnoy payki almazno-abrazivnykh instrumentov [Influence of high-melting fillers on process of the composition soldering of diamond abrasive tools] // Nauchnyy zhurnal KubGAU [Elektronnyy resurs]. 2015. №04 (108). Available at: http://ej.kubagro.ru/2015/04/pdf/59.pdf (accessed: October 10, 2016).
10. Artemev V.P., Sokolov E.G., Kozachenko A.D. Issledovanie vzaimodeystviya kompozitsionnykh pripoev s almazom [Research of interaction of composition solders with diamond] // Metallovedenie i termicheskaya obrabotka metallov. 2013. №6. S. 28–31.
11. Elanskiy G.N. Stroenie i svoystva metallicheskikh rasplavov [Structure and properties metal melts]. M.: Metallurgiya, 1991. 160 s.
12. Yu-Kai Chen, Chia-Ming Hsu, Sinn-Wen Chen, Chih-Ming Chen, Yu-Chih Huang. Phase Equilibria of Sn–Co–Cu Ternary System // Metallurgical and Materials Transactions A. 2012. Vol. 43. Is. 10. P. 3586–3595.
13. Khodakov G.S. Reologiya suspenziy. Teoriya fazovogo techeniya i ee eksperimentalnoe obosnovanie [Rheology of suspensions. Theory of phase current and its experimental justification] // Rossiyskiy khimicheskiy zhurnal. 2003. T. XLVII. №2. S. 33–44.
14. Chekunov I.P. Kinetika formirovaniya payanykh soedineniy stalnykh uzlov kompozitsionnymi pripoyami [Kinetics of forming of sweated connections of steel nodes composition solders] // Svarochnoe proizvodstvo. 1998. №2. S. 21–24.
2. Miflig D.M., Levin M.D. Almaznye fasonnye roliki dlya shlifovaniya arkhitekturnykh izdeliy iz mramora i granita [Diamond shaped rollers for grinding of architectural products from marble and granite] // Instumentalniy svit. 1997. №2. S. 12.
3. Almaznye fasonnye roliki dlya shlifovaniya kamnya proizvodstva «ALKON BEVERS» [Diamond shaped rollers for grinding of stone of production "ALKON BEVERS"] // Instumentalniy svit. 2002. №2. S. 8.
4. Diamond tools for the stone industry. Diamant Boart, 2008. 43 p.
5. Trenker A., Seidemann H. High-vacuum brazing of diamond tools // Industrial Diamond Review. 2002. Vol. 62 (1). P. 49–51.
6. Lee C.H., Ham J.O., Song M.S., Lee C.H. The interfacial reaction between diamond grit and Ni-based brazing filler metal // Materials transactions. 2007. Vol. 48 (4). P. 889–891.
7. Sposob polucheniya abrazivnogo instrumenta iz sverkhtverdykh materialov [Way of receiving abrasive tool from superhard materials]: pat. 2457935 Ros. Federatsiya; opubl. 10.08.12. Byul. №22.
8. Sokolov E.G., Artemev V.P., Kozachenko A.D. Formirovanie metallicheskoy svyazki almazno-abrazivnogo instrumenta pri kompozitsionnoy payke [Forming of metal linking of diamond abrasive tool at the composition soldering] // Tekhnologiya metallov. 2012. №12. S. 35–37.
9. Kozachenko A.D., Sokolov E.G. Vliyanie tugoplavkikh napolniteley na protsess kompozitsionnoy payki almazno-abrazivnykh instrumentov [Influence of high-melting fillers on process of the composition soldering of diamond abrasive tools] // Nauchnyy zhurnal KubGAU [Elektronnyy resurs]. 2015. №04 (108). Available at: http://ej.kubagro.ru/2015/04/pdf/59.pdf (accessed: October 10, 2016).
10. Artemev V.P., Sokolov E.G., Kozachenko A.D. Issledovanie vzaimodeystviya kompozitsionnykh pripoev s almazom [Research of interaction of composition solders with diamond] // Metallovedenie i termicheskaya obrabotka metallov. 2013. №6. S. 28–31.
11. Elanskiy G.N. Stroenie i svoystva metallicheskikh rasplavov [Structure and properties metal melts]. M.: Metallurgiya, 1991. 160 s.
12. Yu-Kai Chen, Chia-Ming Hsu, Sinn-Wen Chen, Chih-Ming Chen, Yu-Chih Huang. Phase Equilibria of Sn–Co–Cu Ternary System // Metallurgical and Materials Transactions A. 2012. Vol. 43. Is. 10. P. 3586–3595.
13. Khodakov G.S. Reologiya suspenziy. Teoriya fazovogo techeniya i ee eksperimentalnoe obosnovanie [Rheology of suspensions. Theory of phase current and its experimental justification] // Rossiyskiy khimicheskiy zhurnal. 2003. T. XLVII. №2. S. 33–44.
14. Chekunov I.P. Kinetika formirovaniya payanykh soedineniy stalnykh uzlov kompozitsionnymi pripoyami [Kinetics of forming of sweated connections of steel nodes composition solders] // Svarochnoe proizvodstvo. 1998. №2. S. 21–24.
13.
№5, 2016
УДК 669.017
Kochubey A.Ya.1, Medvedev P.N.1
Direct pole figures in the study of structure formation processes during heating of deformed metals and alloys
Work is executed within implementation of the complex scientific direction 2.1. «Fundamental the oriented researches» («The strategic directions of development of materials and technologies of their processing for the period till 2030») [1, 2].
The paper presents the methodological research bases of structure formation processes during heating of deformed metals and alloys using direct pole figures [3, 4]. The connection of structural transformations with the respective stereographic projection and direct pole figures changes obtained by x-ray has been shown [5, 6]. Examples of research and primary recrystallization process using direct figure pole have been demonstrated.
Keywords: straight pole figure, X-ray analysis, heat treatment, recrystallization
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
3. Umanskiy Ya.S., Skakov Yu.A., Ivanov A.N., Rastorguev L.N. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, radiographic and electron microscopy]. M.: Metallurgiya, 1982. 632 s.
4. Vishnyakov Ya.D., Babareko A.A., Vladimirov S.A., Egiz I.V. Teoriya obrazovaniya tekstur v metallakh i splavakh [The theory of formation of structures in metals and alloys]. M.: Nauka, 1979. 344 s.
5. Borodkina M.M., Spektor E.N. Rentgenograficheskiy analiz tekstury metallov i splavov [Radiographic analysis of structure of metals and alloys]. M.: Metallurgiya, 1981. 272 s.
6. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. Rentgenograficheskiy i elektronno-opticheskiy analiz [Radiographic and electron-optical analysis]: ucheb. posobie dlya vuzov; 4-e izd., dop. i pererab. M.: MISIS, 2002. 360 s.
7. Kochubey A.Ya., Medvedev P.N., Klochkov G.G., Avtaev V.V. Zakonomernosti teksturoobrazovaniya pri ploskoy osadke splava sistemy Al–Cu–Li [Patterns of teksturoobrazovaniye at flat deposit of alloy of Al–Cu–Li system] // TLS. 2016. №1. S. 78–87.
8. Kochubey A.Ya., Serebryanyy V.N. Vliyanie termomekhanicheskikh parametrov na formirovanie tekstury i struktury pri goryachey obrabotke davleniem splava sistemy Mg–Al–Zn [Influence of thermomechanical parameters on structure and structure forming at hot working pressure of alloy of Mg–Al–Zn system] // TLS. 2007. №2. S. 105–109.
9. Serebryanyy V.N., Kochubey A.Ya., Kurtasov S.F., Melnikov K.E. Teksturnye sostoyaniya goryachedeformirovannogo magnievogo splava MA2-1 [Textural conditions of hot formed MA2-1 magnesium alloy] // Metally. 2007. №1. S. 87–93.
10. Davydov V.G., Ver L.B., Kochubey A.Ya. Vliyanie razmera zerna na diagrammy strukturnykh sostoyaniy splava MA2-1 [Influence of grain size on charts of structural conditions of alloy MA2-1] // TLS. 2003. №2–3. S. 28–34.
11. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
12. Fridlyander I.N., Grushko O.E., Antipov V.V., Kolobnev N.I., Khokhlatova L.B. Alyuminiylitievye splavy [Aluminumlithium alloys] // 75 let. Aviatsionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubileynyy nauch.-tekhnich. sb. M.: VIAM, 2007. S. 163–171.
13. Milevskaya T.V., Ruschits S.V., Tkachenko E.A., Antonov S.M. Deformacionnoe povedenie vysokoprochnyh alyuminievyh splavov v usloviyah goryachej deformacii [Deformation behavior of high-strength aluminum alloys in conditions of hot deformation] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 3–9. DOI: 10.18577/2071-9140-2015-0-2-3-9.
14. Alyuminievye splavy v aviakosmicheskoy tekhnike [Aluminum alloys in aerospace equipment] / pod obshch. red. E.N. Kablova. M.: Nauka, 2001. 192 s.
15. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
3. Umanskiy Ya.S., Skakov Yu.A., Ivanov A.N., Rastorguev L.N. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, radiographic and electron microscopy]. M.: Metallurgiya, 1982. 632 s.
4. Vishnyakov Ya.D., Babareko A.A., Vladimirov S.A., Egiz I.V. Teoriya obrazovaniya tekstur v metallakh i splavakh [The theory of formation of structures in metals and alloys]. M.: Nauka, 1979. 344 s.
5. Borodkina M.M., Spektor E.N. Rentgenograficheskiy analiz tekstury metallov i splavov [Radiographic analysis of structure of metals and alloys]. M.: Metallurgiya, 1981. 272 s.
6. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. Rentgenograficheskiy i elektronno-opticheskiy analiz [Radiographic and electron-optical analysis]: ucheb. posobie dlya vuzov; 4-e izd., dop. i pererab. M.: MISIS, 2002. 360 s.
7. Kochubey A.Ya., Medvedev P.N., Klochkov G.G., Avtaev V.V. Zakonomernosti teksturoobrazovaniya pri ploskoy osadke splava sistemy Al–Cu–Li [Patterns of teksturoobrazovaniye at flat deposit of alloy of Al–Cu–Li system] // TLS. 2016. №1. S. 78–87.
8. Kochubey A.Ya., Serebryanyy V.N. Vliyanie termomekhanicheskikh parametrov na formirovanie tekstury i struktury pri goryachey obrabotke davleniem splava sistemy Mg–Al–Zn [Influence of thermomechanical parameters on structure and structure forming at hot working pressure of alloy of Mg–Al–Zn system] // TLS. 2007. №2. S. 105–109.
9. Serebryanyy V.N., Kochubey A.Ya., Kurtasov S.F., Melnikov K.E. Teksturnye sostoyaniya goryachedeformirovannogo magnievogo splava MA2-1 [Textural conditions of hot formed MA2-1 magnesium alloy] // Metally. 2007. №1. S. 87–93.
10. Davydov V.G., Ver L.B., Kochubey A.Ya. Vliyanie razmera zerna na diagrammy strukturnykh sostoyaniy splava MA2-1 [Influence of grain size on charts of structural conditions of alloy MA2-1] // TLS. 2003. №2–3. S. 28–34.
11. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
12. Fridlyander I.N., Grushko O.E., Antipov V.V., Kolobnev N.I., Khokhlatova L.B. Alyuminiylitievye splavy [Aluminumlithium alloys] // 75 let. Aviatsionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubileynyy nauch.-tekhnich. sb. M.: VIAM, 2007. S. 163–171.
13. Milevskaya T.V., Ruschits S.V., Tkachenko E.A., Antonov S.M. Deformacionnoe povedenie vysokoprochnyh alyuminievyh splavov v usloviyah goryachej deformacii [Deformation behavior of high-strength aluminum alloys in conditions of hot deformation] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 3–9. DOI: 10.18577/2071-9140-2015-0-2-3-9.
14. Alyuminievye splavy v aviakosmicheskoy tekhnike [Aluminum alloys in aerospace equipment] / pod obshch. red. E.N. Kablova. M.: Nauka, 2001. 192 s.
15. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
14.
№4, 2016
УДК 620.1:669.055
Development of elementary constructive and similar samples and their compression tests
In article one of approaches of development of elementary constructive and similar samples and carrying compression tests for is considered at static and repeated loadings when using the patented adaptation. Research were executed within realization of the complex scientific direction 6.2. «Layered metalpolymer, bimetallic and hybrid materials» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: compression, structural test samples, aluminum-lithium alloys, wing panel fragments, a hybrid material
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Materialy dlya aviakosmicheskoy tekhniki [Materials for aerospace equipment] // Vse materialy. Entsiklopedicheskiy spravochnik. 2007. №5. S. 7–27.
4. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
5. Erasov V.S., Nuzhnyj G.A. Zhestkij cikl nagruzheniya pri ustalostnyh ispytaniyah [Rigid cycle of loading at fatigue tests] //Aviacionnye materialy i tehnologii. 2011. №4. S. 35–40.
6. GOST 25.503–97. Mezhgosudarstvennyy standart. Raschety i ispytaniya na prochnost. Metod ispytaniya na szhatie [Interstate standard. Calculations and strength tests. Test method on compression]. M.: IPK. Izdatelstvo standartov. 2005. 28 s.
7. Prisposoblenie dlya ispytaniy na szhatie konstruktivno-podobnykh obraztsov [The adaptation for compression tests of constructive and similar samples]: pat. 157415 Ros. Federatsiya; opubl. 10.11.15.
8. Podzhivotov N.Yu., Kablov E.N., Antipov V.V., Erasov V.S., Serebrennikova N.Yu., Abdullin M.R., Limonin M.V. Sloistye metallopolimernye materialy v elementakh konstruktsii vozdushnykh sudov [Layered metalpolymeric materials in elements of design of air vehicles] // Perspektivnye materialy. 2016 (v pechati).
9. Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., Erasov V.S., Kashirin V.V. Gibridnye sloistye materialy na baze alyuminiy-litievykh splavov primenitel'no k panelyam kryla samoleta [Hybrid layered materials on base aluminum-lithium alloys with reference to airplane wing panels] // Aviatsionnye materialy i tekhnologii. 2016. №3 (42). S. 3–8. DOI 10.18577/2071-9140-2016-0-3-3-8.
10. Antipov V.V., Senatorova O.G., Sidelnikov V.V., Shestov V.V. Konstruktsionnye sloistye materialy SIAL [SIAL constructional layered materials] // Klei, germetiki, tekhnologii. 2012. №6. S. 13–17.
11. Kablov E.N., Antipov V.V., Senatorova O.G. Sloistye alyumostekloplastiki SIAL-1441 i sotrudnichestvo s Airbus i TU Delft [Layered alyumostekloplastiki SIAL-1441 and cooperation with Airbus and TU Delft] // Tsvetnye metally. 2013. №9 (849). S. 50–53.
12. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Novyy klass sloistykh al-yumostekloplastikov na osnove alyuminiy-litievogo splava 1441 s ponizhennoy plotnostyu [New class layered alyumostekloplastikov on basis aluminum-lithium alloy 1441 with low-ered density] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 174–183.
13. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie alyuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] // Aviacionnye materialy i tehnologii. 2012. №S.
S. 183–195.
14. Startsev O.V., Krotov A.S., Senatorova O.G., Anikhovskaya L.I., Antipov V.V., Grash-chenkov D.V. Sorbatsiya i diffuziya vlagi v sloistykh metallopolimernykh kompozitsionnykh materialakh tipa «SIAL» [Sorbatsiya and moisture diffusion in layered metalpolymeric composite materials of the SIAL type] // Materialovedenie. 2011. №12. S. 38–44
15. Klochkova Yu.Yu., Klochkov G.G., Romanenko V.A., Popov V.I. Struktura i svojstva listov iz vysokoprochnogo alyuminij-litievogo splava V-1469 [Structure and properties of sheets from high-strength aluminum-lithium alloy V-1469] // Aviacionnye materialy i tehnologii. 2015. №4 (37).
S. 3–8. DOI: 10.18577/2071-9140-2015-0-4-3-8.
16. Oreshko E.I., Erasov V.S., Podzhivotov N.Yu., Lucenko A.N. Raschet na prochnost gibridnoj paneli kryla na baze listov i profilej iz vysokoprochnogo alyuminijlitievogo splava i sloistogo alyumostekloplastika [Strength calculation of hybrid wing panel on the basis of sheets and profiles from high-strength aluminum lithium alloy and laminated aluminum fiberglass] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 53–61. DOI: 10.18577/2071-9140-2016-0-1-53-61.
17. Oreshko E.I., Erasov V.S., Podjivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117. DOI: 10.18577/2071-9140-2014-0-S4-109-117.
18. Erasov V.S., Grinevich A.V., Senik V.Ya. i dr. Raschetnye znacheniya harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
19. Khertel G. Tonkostennye konstruktsii [Thin-walled designs]. M.: Mashinostroenie, 1965. 528 s.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Materialy dlya aviakosmicheskoy tekhniki [Materials for aerospace equipment] // Vse materialy. Entsiklopedicheskiy spravochnik. 2007. №5. S. 7–27.
4. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
5. Erasov V.S., Nuzhnyj G.A. Zhestkij cikl nagruzheniya pri ustalostnyh ispytaniyah [Rigid cycle of loading at fatigue tests] //Aviacionnye materialy i tehnologii. 2011. №4. S. 35–40.
6. GOST 25.503–97. Mezhgosudarstvennyy standart. Raschety i ispytaniya na prochnost. Metod ispytaniya na szhatie [Interstate standard. Calculations and strength tests. Test method on compression]. M.: IPK. Izdatelstvo standartov. 2005. 28 s.
7. Prisposoblenie dlya ispytaniy na szhatie konstruktivno-podobnykh obraztsov [The adaptation for compression tests of constructive and similar samples]: pat. 157415 Ros. Federatsiya; opubl. 10.11.15.
8. Podzhivotov N.Yu., Kablov E.N., Antipov V.V., Erasov V.S., Serebrennikova N.Yu., Abdullin M.R., Limonin M.V. Sloistye metallopolimernye materialy v elementakh konstruktsii vozdushnykh sudov [Layered metalpolymeric materials in elements of design of air vehicles] // Perspektivnye materialy. 2016 (v pechati).
9. Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., Erasov V.S., Kashirin V.V. Gibridnye sloistye materialy na baze alyuminiy-litievykh splavov primenitel'no k panelyam kryla samoleta [Hybrid layered materials on base aluminum-lithium alloys with reference to airplane wing panels] // Aviatsionnye materialy i tekhnologii. 2016. №3 (42). S. 3–8. DOI 10.18577/2071-9140-2016-0-3-3-8.
10. Antipov V.V., Senatorova O.G., Sidelnikov V.V., Shestov V.V. Konstruktsionnye sloistye materialy SIAL [SIAL constructional layered materials] // Klei, germetiki, tekhnologii. 2012. №6. S. 13–17.
11. Kablov E.N., Antipov V.V., Senatorova O.G. Sloistye alyumostekloplastiki SIAL-1441 i sotrudnichestvo s Airbus i TU Delft [Layered alyumostekloplastiki SIAL-1441 and cooperation with Airbus and TU Delft] // Tsvetnye metally. 2013. №9 (849). S. 50–53.
12. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Novyy klass sloistykh al-yumostekloplastikov na osnove alyuminiy-litievogo splava 1441 s ponizhennoy plotnostyu [New class layered alyumostekloplastikov on basis aluminum-lithium alloy 1441 with low-ered density] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 174–183.
13. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie alyuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] // Aviacionnye materialy i tehnologii. 2012. №S.
S. 183–195.
14. Startsev O.V., Krotov A.S., Senatorova O.G., Anikhovskaya L.I., Antipov V.V., Grash-chenkov D.V. Sorbatsiya i diffuziya vlagi v sloistykh metallopolimernykh kompozitsionnykh materialakh tipa «SIAL» [Sorbatsiya and moisture diffusion in layered metalpolymeric composite materials of the SIAL type] // Materialovedenie. 2011. №12. S. 38–44
15. Klochkova Yu.Yu., Klochkov G.G., Romanenko V.A., Popov V.I. Struktura i svojstva listov iz vysokoprochnogo alyuminij-litievogo splava V-1469 [Structure and properties of sheets from high-strength aluminum-lithium alloy V-1469] // Aviacionnye materialy i tehnologii. 2015. №4 (37).
S. 3–8. DOI: 10.18577/2071-9140-2015-0-4-3-8.
16. Oreshko E.I., Erasov V.S., Podzhivotov N.Yu., Lucenko A.N. Raschet na prochnost gibridnoj paneli kryla na baze listov i profilej iz vysokoprochnogo alyuminijlitievogo splava i sloistogo alyumostekloplastika [Strength calculation of hybrid wing panel on the basis of sheets and profiles from high-strength aluminum lithium alloy and laminated aluminum fiberglass] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 53–61. DOI: 10.18577/2071-9140-2016-0-1-53-61.
17. Oreshko E.I., Erasov V.S., Podjivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117. DOI: 10.18577/2071-9140-2014-0-S4-109-117.
18. Erasov V.S., Grinevich A.V., Senik V.Ya. i dr. Raschetnye znacheniya harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
19. Khertel G. Tonkostennye konstruktsii [Thin-walled designs]. M.: Mashinostroenie, 1965. 528 s.
15.
№3, 2016
УДК 621.983.7
Shishkin A.A.1
Researching of the extreme performance of the reduction of thin-walled tubular billets in the production of pressure vessels
The extreme performance of the reduction of tubular billets by axial force in a rigid die is theoretically and experimentally researched. It is established that the cause of circumferential loss of stability is the heterogeneity of the properties of materials. The mathematical models, giving the possibility to calculate stress-strain state and maximal reduction ratios, are presented. The calculations were experimentally verified. Abnormal limiting factors of reduction with local heating, such as softening of the force transmission zone and jamming of the edge, were defined.
Keywords: reduction of tubes, thin-walled billet, loss of stability, forming with heating, isothermal stamping.
Reference List
1. Shishkin A.A. Metody predotvrashcheniya poteri ustoychivosti pri obzhime tonkostennykh trub [Methods of prevention of loss of stability at compression of thin-walled pipes] // Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem: sb. tr. k 70-letiyu kafedry «TPLA». M., 2010. S. 43–44.
2. Gorbunov M.N. Shtampovka detaley iz trubchatykh zagotovok [Punching of details from tubular preparations]. M.: Mashgiz, 1960. S. 131–133.
3. Obraztsov I.F., Vasilev V.V., Bunakov V.A. Optimalnoe armirovanie obolochek vrashcheniya iz kompozitsionnykh materialov [Optimum reinforcing of covers of rotation from composite materials]. M.: Mashinostroenie, 1977. 144 s.
4. Chumadin A.S., Shishkin A.A. Issledovanie protsessa obzhima tonkostennykh trub [Research of process of compression of thin-walled pipes] // Kuznechno-shtampovochnoe pro-izvodstvo. Obrabotka materialov davleniem. 2012. №11. S. 14–19.
5. Marciniak Z., Kuczynski K. Limit strains in the processes of stretch-forming sheet metal // International Journal of Mechanical Science. 1967. V. 9. P. 609–620.
6. Miklyaev P.G., Dudenkov V.M. Soprotivlenie deformatsii i plastichnost' alyuminievykh splavov: spravochnik [Resistance of deformation and plasticity of aluminum alloys: directory]. M.: Metallurgiya, 1979. 183 s
2. Gorbunov M.N. Shtampovka detaley iz trubchatykh zagotovok [Punching of details from tubular preparations]. M.: Mashgiz, 1960. S. 131–133.
3. Obraztsov I.F., Vasilev V.V., Bunakov V.A. Optimalnoe armirovanie obolochek vrashcheniya iz kompozitsionnykh materialov [Optimum reinforcing of covers of rotation from composite materials]. M.: Mashinostroenie, 1977. 144 s.
4. Chumadin A.S., Shishkin A.A. Issledovanie protsessa obzhima tonkostennykh trub [Research of process of compression of thin-walled pipes] // Kuznechno-shtampovochnoe pro-izvodstvo. Obrabotka materialov davleniem. 2012. №11. S. 14–19.
5. Marciniak Z., Kuczynski K. Limit strains in the processes of stretch-forming sheet metal // International Journal of Mechanical Science. 1967. V. 9. P. 609–620.
6. Miklyaev P.G., Dudenkov V.M. Soprotivlenie deformatsii i plastichnost' alyuminievykh splavov: spravochnik [Resistance of deformation and plasticity of aluminum alloys: directory]. M.: Metallurgiya, 1979. 183 s
16.
№3, 2016
УДК 620.178
Semenychev V.V.1, Panarin A.V.1
Application of sclerometry for more informativeness measured characteristics of chromium and nickel coatings
On 12H18N9T steel samples was deposited chromium and nickel coatings thickness 20–25 μm, wherein the used standard electrolytes & electrolytes containing nanoscale particles. The measured values of coatings microhardness showed, that this value considerably depends on in which electrolyte was formed this or another coating. With loads 50 and 70 N were applied scratches by diamond indenter from developed sclerometer on samples with different types of galvanic coatings. These grooves investigated by microscopic methods, evaluated the width, depth and morphology of the bottom & banks of scratches. It’s found, that the geometric parameters of the grooves depend on composition of used electrolytes. So, standard chromium coating characterized by maximum width & depth of the grooves in contrast to chromium coatings formed in cluster electrolytes, where this parameters have the smaller values. At the bottom of the grooves on standard nickel coating found a cracks perpendicular to the grooves
Keywords: sclerometry, galvanic functional coatings, metallography, groove geometry analysis, microhardness.
Reference List
1. Kablov E.N. Tendencii i orientiry innovacionnogo razvitija Rossii [Tendencies and reference points of innovative development of Russia]: sb. inf. mater. 3-e izd., pererab. i dop. M.: VIAM, 2015.
720 s.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
4. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012.
520 s.
5. Kablov E.N. Korrozija ili zhizn [Corrosion or life] // Nauka i zhizn'. 2012. №3. S. 16–21.
6. Dolmatov V.Ju. Ultradispersnye almazy detonacionnogo sinteza. Poluchenie, svojstva, primenenie [Ultradisperse diamonds of detonation synthesis. Receiving, properties, application]. SPb.: SPbGPU, 2003. 344 c.
7. Nagaeva L.V. Primenenie nanoporoshkov v jelektrolitah nikelirovanija kak sposob poluchenija nikelevyh pokrytij, po svojstvam ne ustupajushhim hromovym pokrytijam [Application of nanopowders in nickel plating electrolits as a way of receiving nickel coverings, on properties to not conceding chromic coverings] // Korrozija: materialy, zashhita. 2007. №9. S. 32–36.
8. Semenychev V.V., Salahova R.K., Tyurikov E.V., Ilin V.A. Zashhitnye i funkcionalnye galvanicheskie pokrytiya, poluchaemye s primeneniem nanorazmernyh chastic [The protective and functional galvanic coverings received using nanodimensional particles] // Aviacionnye materialy i tehnologii. 2012. №S. S. 335–342.
9. Salahova R.K., Semenychev V.V. Jeffektivnost' primenenija nanopo-roshkov v proizvodstve galvanicheskih pokrytij [Efficiency of application of nanopowders in production of galvanic coverings] // Korrozija: materialy, zashhita. 2015. №11. S. 36–44.
10. Panarin A.V. Piroliticheskie karbidohromovye pokrytiya. Tehnologiya polucheniya i svojstva [Pyrolitic carbide chrome platings. Technology of receiving and property] // Aviacionnye materialy i tehnologii. 2011. №4. S. 14–18.
11. Semenychev V.V., Koshelev V.N., Panarin A.V. Jekologicheski bezopas-nyj tehnologicheskij process nanesenija zashhitnyh piroliticheskih aljuminievyh pokrytij bez navodorozhivanija stal'noj podlozhki [Ecologically safe technological process of drawing protective pyrolitic aluminum coverings without a navodorozhivaniye of a steel substrate] // Izvestija Samarskogo nauchnogo centra RAN. 2008. T. 1. Spec. vypusk. S. 18–23.
12. Panarin A.V. Piroliticheskie karbidohromovye pokrytija: poluchenie, svojstva i apparaturnoe obespechenie processa [Pyrolitic karbidokhromovy coverings: receiving, properties and hardware ensuring process] // Aviacionnye materialy i tehnologii. 2009. №2. S. 14–19.
13. Kurs M.G., Karimova S.A. Naturno-uskorennye ispytaniya: osobennosti metodiki i sposoby ocenki korrozionnyh harakteristik alyuminievyh splavov [Salt-accelerated outdoor corrosion testing: methodology and evaluation of corrosion susceptibility of aluminum alloy] // Aviacionnye materialy i tehnologii. 2014. №1. S. 51–57.
14. Zhirnov A.D., Semenychev V.V., Holshev S.I. Ispytanie aviacionnyh materialov v uslovijah morskogo subtropicheskogo klimata. Metodicheskoe rukovodstvo [Test of aviation materials in the conditions of sea subtropical climate. Methodical management]. M.: VIAM, 1987. 48 c.
15. Salahova R.K., Semenychev V.V. Puti povyshenija korrozionnoj stojkosti stal'nyh detalej s hromovymi pokrytijami [Ways of increase of corrosion firmness of steel details with chromic coverings] // Korrozija: materialy, zashhita. 2009. №10. S. 43–48.
16. Semenychev V.V., Salahova R.K. Sklerometrija kak metod ocenki intensivnosti mezhkristallitnoj korrozii [Sklerometriya as method of an assessment of intensity of mezhkristallitny corrosion] // Korrozija: materialy, zashhita. 2015. №12. S. 37–41.
17. Startsev O.V., Medvedev I.M., Kurs M.G. Tverdost kak indikator korrozii alyuminievyh splavov v morskih usloviyah [Hardness as the indicator of corrosion of aluminum alloys in sea conditions] // Aviacionnye materialy i tehnologii. 2012. №3. S. 16–19.
18. Salahova R.K., Semenychev V.V., Tihoobrazov A.B. Issledovanie galvanicheskih kompozicionnyh pokrytij metallofizicheskimi metodami [Research of galvanic composite coverings by metalphysical methods] // Galvanotehnika i obrabotka poverhnosti. 2013. T. XXI. №3. S. 45–49.
19. P. Benjamin, C. Weaver. Measurement of Adhesion of Thin Films // Proc. Royal. Society. London. 1960. P. 163–176.
20. C. Weaver. Adhesion of Thin Films //Vac. Sci. Technol. 1975. P. 18–25.
21. Jelektrolit hromirovanija i sposob poluchenija hromovogo pokrytija na stalnyh detaljah [Electrolit of chromium plating and a way of receiving a chromic covering on steel details]: pat. 2231581 Ros. Federacija; zajavl. 25.12.02, opubl. 27.06.04. 5 s.
22. Jelektrolit nikelirovanija [Nickel plating electrolit]: pat. 2293803 Ros. Federacija; zajavl. 01.08.05, opubl. 20.02.07. Bjul. №5. 6 s.
23. Salahova R.K., Semenychev V.V., Tjurikov E.V. Izbiratelnoe nanesenie zashhitnyh jelektro-himicheskih pokrytij [Selective drawing protective electrochemical coverings] // Galvanotehnika i obrabotka poverhnosti. 2008. T. XVI. №4. S. 36–40.
720 s.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
4. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012.
520 s.
5. Kablov E.N. Korrozija ili zhizn [Corrosion or life] // Nauka i zhizn'. 2012. №3. S. 16–21.
6. Dolmatov V.Ju. Ultradispersnye almazy detonacionnogo sinteza. Poluchenie, svojstva, primenenie [Ultradisperse diamonds of detonation synthesis. Receiving, properties, application]. SPb.: SPbGPU, 2003. 344 c.
7. Nagaeva L.V. Primenenie nanoporoshkov v jelektrolitah nikelirovanija kak sposob poluchenija nikelevyh pokrytij, po svojstvam ne ustupajushhim hromovym pokrytijam [Application of nanopowders in nickel plating electrolits as a way of receiving nickel coverings, on properties to not conceding chromic coverings] // Korrozija: materialy, zashhita. 2007. №9. S. 32–36.
8. Semenychev V.V., Salahova R.K., Tyurikov E.V., Ilin V.A. Zashhitnye i funkcionalnye galvanicheskie pokrytiya, poluchaemye s primeneniem nanorazmernyh chastic [The protective and functional galvanic coverings received using nanodimensional particles] // Aviacionnye materialy i tehnologii. 2012. №S. S. 335–342.
9. Salahova R.K., Semenychev V.V. Jeffektivnost' primenenija nanopo-roshkov v proizvodstve galvanicheskih pokrytij [Efficiency of application of nanopowders in production of galvanic coverings] // Korrozija: materialy, zashhita. 2015. №11. S. 36–44.
10. Panarin A.V. Piroliticheskie karbidohromovye pokrytiya. Tehnologiya polucheniya i svojstva [Pyrolitic carbide chrome platings. Technology of receiving and property] // Aviacionnye materialy i tehnologii. 2011. №4. S. 14–18.
11. Semenychev V.V., Koshelev V.N., Panarin A.V. Jekologicheski bezopas-nyj tehnologicheskij process nanesenija zashhitnyh piroliticheskih aljuminievyh pokrytij bez navodorozhivanija stal'noj podlozhki [Ecologically safe technological process of drawing protective pyrolitic aluminum coverings without a navodorozhivaniye of a steel substrate] // Izvestija Samarskogo nauchnogo centra RAN. 2008. T. 1. Spec. vypusk. S. 18–23.
12. Panarin A.V. Piroliticheskie karbidohromovye pokrytija: poluchenie, svojstva i apparaturnoe obespechenie processa [Pyrolitic karbidokhromovy coverings: receiving, properties and hardware ensuring process] // Aviacionnye materialy i tehnologii. 2009. №2. S. 14–19.
13. Kurs M.G., Karimova S.A. Naturno-uskorennye ispytaniya: osobennosti metodiki i sposoby ocenki korrozionnyh harakteristik alyuminievyh splavov [Salt-accelerated outdoor corrosion testing: methodology and evaluation of corrosion susceptibility of aluminum alloy] // Aviacionnye materialy i tehnologii. 2014. №1. S. 51–57.
14. Zhirnov A.D., Semenychev V.V., Holshev S.I. Ispytanie aviacionnyh materialov v uslovijah morskogo subtropicheskogo klimata. Metodicheskoe rukovodstvo [Test of aviation materials in the conditions of sea subtropical climate. Methodical management]. M.: VIAM, 1987. 48 c.
15. Salahova R.K., Semenychev V.V. Puti povyshenija korrozionnoj stojkosti stal'nyh detalej s hromovymi pokrytijami [Ways of increase of corrosion firmness of steel details with chromic coverings] // Korrozija: materialy, zashhita. 2009. №10. S. 43–48.
16. Semenychev V.V., Salahova R.K. Sklerometrija kak metod ocenki intensivnosti mezhkristallitnoj korrozii [Sklerometriya as method of an assessment of intensity of mezhkristallitny corrosion] // Korrozija: materialy, zashhita. 2015. №12. S. 37–41.
17. Startsev O.V., Medvedev I.M., Kurs M.G. Tverdost kak indikator korrozii alyuminievyh splavov v morskih usloviyah [Hardness as the indicator of corrosion of aluminum alloys in sea conditions] // Aviacionnye materialy i tehnologii. 2012. №3. S. 16–19.
18. Salahova R.K., Semenychev V.V., Tihoobrazov A.B. Issledovanie galvanicheskih kompozicionnyh pokrytij metallofizicheskimi metodami [Research of galvanic composite coverings by metalphysical methods] // Galvanotehnika i obrabotka poverhnosti. 2013. T. XXI. №3. S. 45–49.
19. P. Benjamin, C. Weaver. Measurement of Adhesion of Thin Films // Proc. Royal. Society. London. 1960. P. 163–176.
20. C. Weaver. Adhesion of Thin Films //Vac. Sci. Technol. 1975. P. 18–25.
21. Jelektrolit hromirovanija i sposob poluchenija hromovogo pokrytija na stalnyh detaljah [Electrolit of chromium plating and a way of receiving a chromic covering on steel details]: pat. 2231581 Ros. Federacija; zajavl. 25.12.02, opubl. 27.06.04. 5 s.
22. Jelektrolit nikelirovanija [Nickel plating electrolit]: pat. 2293803 Ros. Federacija; zajavl. 01.08.05, opubl. 20.02.07. Bjul. №5. 6 s.
23. Salahova R.K., Semenychev V.V., Tjurikov E.V. Izbiratelnoe nanesenie zashhitnyh jelektro-himicheskih pokrytij [Selective drawing protective electrochemical coverings] // Galvanotehnika i obrabotka poverhnosti. 2008. T. XVI. №4. S. 36–40.
17.
№1, 2016
УДК 539.26:548.4
Treninkov I.A.2
High speed x-ray laboratory setup for determination of single-сrystal orientation and evaluation of structure perfection
We have demonstrated a high speed of operation and an efficiency of the experimental laboratory setup under control of the software module including a system of recognition of the single-crystal Laue diffraction pattern.
Keywords: Laue method, determination of a single-crystal orientation.
Reference List
1. Buades A., Coll B., Morel J.M. A non local algorithm for image denoising // IEEE Computer Vision and Pattern Recognition. 2005. V. 2. P. 60–65.
2. Denisov V.N., Lemesh I.G., Martjushov S.Ju., Poljakov S.N. Laboratornaja avtomatizirovannaja sistema kontrolja struktury kristallov almaza v rezhime real'nogo vremeni [The laboratory automated monitoring system of structure of crystals of diamond in real time] // Himija i himicheskaja tehnologija. 2013. T. 56. №7. S. 34–38.
3. Huang X.R. LauePt, a graphical-user-interface program for simulating and analyzing white-beam X-ray diffraction Laue patterns // Journal of Applied Crystallography. 2010. V. 43. P. 926–928.
4. Polyakov S.N., Denisov V.N. et al. Formation of Boron-Carbon Nanosheets and Bilayers in Boron-Doped Diamond: Origin of Metallicity and Superconductivity // Nanoscale Research Letters. 2016. DOI 10.1186/s11671-015-1215-6.
2. Denisov V.N., Lemesh I.G., Martjushov S.Ju., Poljakov S.N. Laboratornaja avtomatizirovannaja sistema kontrolja struktury kristallov almaza v rezhime real'nogo vremeni [The laboratory automated monitoring system of structure of crystals of diamond in real time] // Himija i himicheskaja tehnologija. 2013. T. 56. №7. S. 34–38.
3. Huang X.R. LauePt, a graphical-user-interface program for simulating and analyzing white-beam X-ray diffraction Laue patterns // Journal of Applied Crystallography. 2010. V. 43. P. 926–928.
4. Polyakov S.N., Denisov V.N. et al. Formation of Boron-Carbon Nanosheets and Bilayers in Boron-Doped Diamond: Origin of Metallicity and Superconductivity // Nanoscale Research Letters. 2016. DOI 10.1186/s11671-015-1215-6.
18.
№6, 2015
УДК 621.873:539.4
Destruction of the load gripping device in use
A diagnosis of the technical state of weight-handling straps in operation and those rejected in case of unacceptable damages is completed. A comprehensive study of mechanisms’ and causes of accidental destruction of the strap bracket has been conducted. The results of experiments and calculations are provided.
Keywords: weight-handling straps, diagnosis, safety, damages, defects, destruction, durability.
Reference List
1. RD 10-231–98. Stropy gruzovye obshhego naznachenija. Trebovanija k ustrojstvu i bezopasnoj jekspluatacii [Slings cargo general purpose. Requirements to the device and safe operation].
2. GOST 25573–82. Stropy gruzovye kanatnye dlja stroitel'stva. Tehnicheskie uslovija [Slings cargo rope for construction. Specifications].
3. RD 50-672–88. Metodicheskie ukazanija. Raschety i ispytanija na prochnost'. Klassifikacija vidov izlomov metallov [Methodical instructions. Calculations and strength tests. Classification of types of breaks of metals].
4. Mak-Ivili A.Dzh. Analiz avarijnyh razrushenij [Analysis of emergency destructions]: Per. s angl. M.: Tehnosfera. 2010. 413 s.
5. GOST 1778–70. Stal'. Metallograficheskie metody opredelenija nemetallicheskih vkljuchenij [Steel. Metallographic methods of definition of non-metallic inclusions].
6. Botvina L.R., Limar' L.V., Logovikov B.S. Ocenka parametrov skachkoobraznogo rosta ustalostnoj treshhiny v kompressornyh lopatkah iz titanovogo splava VT3-1 [Assessment of parameters of intermittent growth of fatigue crack in compressor blades from BT3-1 titanium alloy] //FHMM. 1981. №1. S. 71–74.
7. Spravochnik po kojefficientam intensivnosti naprjazhenij [Directory on factors of intensity of tension]: V 2-h tomah; Per. s angl. /Pod red. Ju. Murakami. M.: Mir. 1990. 1014 s.
8. Mahutov N.A. Konstrukcionnaja prochnost', resurs i tehnogennaja bezopasnost' [Constructional durability, resource and technogenic safety]: V 2 ch. Novosibirsk: Nauka. 2005. Ch. 1: Kriterii prochnosti i resursa. 494 s.
9. Mahutov N.A. Soprotivlenie jelementov konstrukcij hrupkomu razrusheniju [Resistance of elements of designs to brittle destruction]. M.: Mashinostroenie. 1973. 200 s.
10. Beljaev N.M. Soprotivlenie materialov [Resistance of materials]. M.: Nauka. 1976. 607 s.
2. GOST 25573–82. Stropy gruzovye kanatnye dlja stroitel'stva. Tehnicheskie uslovija [Slings cargo rope for construction. Specifications].
3. RD 50-672–88. Metodicheskie ukazanija. Raschety i ispytanija na prochnost'. Klassifikacija vidov izlomov metallov [Methodical instructions. Calculations and strength tests. Classification of types of breaks of metals].
4. Mak-Ivili A.Dzh. Analiz avarijnyh razrushenij [Analysis of emergency destructions]: Per. s angl. M.: Tehnosfera. 2010. 413 s.
5. GOST 1778–70. Stal'. Metallograficheskie metody opredelenija nemetallicheskih vkljuchenij [Steel. Metallographic methods of definition of non-metallic inclusions].
6. Botvina L.R., Limar' L.V., Logovikov B.S. Ocenka parametrov skachkoobraznogo rosta ustalostnoj treshhiny v kompressornyh lopatkah iz titanovogo splava VT3-1 [Assessment of parameters of intermittent growth of fatigue crack in compressor blades from BT3-1 titanium alloy] //FHMM. 1981. №1. S. 71–74.
7. Spravochnik po kojefficientam intensivnosti naprjazhenij [Directory on factors of intensity of tension]: V 2-h tomah; Per. s angl. /Pod red. Ju. Murakami. M.: Mir. 1990. 1014 s.
8. Mahutov N.A. Konstrukcionnaja prochnost', resurs i tehnogennaja bezopasnost' [Constructional durability, resource and technogenic safety]: V 2 ch. Novosibirsk: Nauka. 2005. Ch. 1: Kriterii prochnosti i resursa. 494 s.
9. Mahutov N.A. Soprotivlenie jelementov konstrukcij hrupkomu razrusheniju [Resistance of elements of designs to brittle destruction]. M.: Mashinostroenie. 1973. 200 s.
10. Beljaev N.M. Soprotivlenie materialov [Resistance of materials]. M.: Nauka. 1976. 607 s.
19.
№6, 2015
УДК 621.785.532
Analysis and prognostication of operating failures of the gearbox of the gas turbine engine units after ion nitriding
Analysis of the causes of the typical failures of gears is presented in this paper, and also the method of ion nitriding with hollow cathode effect (HCE) to prevent them is offered. The influence of the ion nitriding with HCE on the microhardness and growth of the hardened layer was investigated.
Keywords: ion nitriding, hollow cathode effect, chemical heat treatment, gear.
Reference List
1. Lahtin Ju.M., Kogan Ja.D. Azotirovanie stali [Steel nitriding]. M.: Mashinostroenie. 1976. 256 s.
2. Zinchenko V.M. Inzhenerija poverhnosti zubchatyh koles metodami himiko-termicheskoj obrabotki [Engineering of surface of toothed wheels methods of chemical and thermal processing]. M: Izd-vo MGTU im. N.Je. Baumana. 2001. 303 s.
3. Gerasimov S.A., Kuksenova L.I., Lapteva V.G. Struktura i iznosostojkost' azotirovannyh konstrukcionnyh stalej i splavov [Structure and wear resistance nitrated constructional steels and alloys]. M.: Izd-vo MGTU im. N.Je. Baumana. 2012. 518 s.
4. Budilov V.V., Ramazanov K.N., Husainov Ju.G., Zolotov I.V. Perspektivy ispol'zovanija jeffekta pologo katoda pri lokal'nom azotirovanii detalej iz stali 16H3NVFMB-Sh [Perspectives of use of effect of the hollow cathode at local nitriding of details from steel 16KH3NVFMB-Sh] //Vestnik UGATU. 2014. T. 18. №1. S. 32–36.
5. Budilov V.V., Ramazanov K.N., Zolotov I.V., Husainov Ju.G. Primenenie jeffekta pologo katoda dlja lokal'nogo ionnogo azotirovanija konstrukcionnoj stali 16H3NVFMB-Sh [Application of effect of the hollow cathode for local ion nitriding of structural steel 16KH3NVFMB-Sh] //Uprochnjajushhie tehnologii i pokrytija. 2014. №12. S. 27–30.
2. Zinchenko V.M. Inzhenerija poverhnosti zubchatyh koles metodami himiko-termicheskoj obrabotki [Engineering of surface of toothed wheels methods of chemical and thermal processing]. M: Izd-vo MGTU im. N.Je. Baumana. 2001. 303 s.
3. Gerasimov S.A., Kuksenova L.I., Lapteva V.G. Struktura i iznosostojkost' azotirovannyh konstrukcionnyh stalej i splavov [Structure and wear resistance nitrated constructional steels and alloys]. M.: Izd-vo MGTU im. N.Je. Baumana. 2012. 518 s.
4. Budilov V.V., Ramazanov K.N., Husainov Ju.G., Zolotov I.V. Perspektivy ispol'zovanija jeffekta pologo katoda pri lokal'nom azotirovanii detalej iz stali 16H3NVFMB-Sh [Perspectives of use of effect of the hollow cathode at local nitriding of details from steel 16KH3NVFMB-Sh] //Vestnik UGATU. 2014. T. 18. №1. S. 32–36.
5. Budilov V.V., Ramazanov K.N., Zolotov I.V., Husainov Ju.G. Primenenie jeffekta pologo katoda dlja lokal'nogo ionnogo azotirovanija konstrukcionnoj stali 16H3NVFMB-Sh [Application of effect of the hollow cathode for local ion nitriding of structural steel 16KH3NVFMB-Sh] //Uprochnjajushhie tehnologii i pokrytija. 2014. №12. S. 27–30.
20.
№6, 2015
УДК 629.7.018.4:669.245
FRACTOGRAPHIC RESEARCH OF LOW-CYCLIC FATIGUE FAILURE OF TURBINE DISK BY METHOD OF SCANNING ELECTRON MICROSCOPY
Fractographic research of the mechanism of development of fatigue crack in the turbine disk of alloy ЭП742 in combination application of numerical and analytical methods of calculation intense the deformed condition of alloy in top of crack has allowed to determine by method of scanning electron microscopy the speed of low-cyclic fatigue failure of disk in use.
Keywords: fraktografiya, scanning electron microscopy, low-cyclic fatigue, factor of intensity of tension, nickel-base superalloy EP742, kinetic model of fatigue failure.
Reference List
1. Zharoprochnyj deformiruemyj splav na osnove nikelja i izdelie, vypolnennoe iz jetogo splava [Heat resisting deformable alloy on the basis of nickel and the product executed from this alloy]: pat. 2365657 Ros. Federacija; opubl. 27.08.2009.
2. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh splavov i tehnologij ih proizvodstva dlja aviacionnogo dvigatelestroenija [Creation of modern hot strength alloys and technologies of their production for aviation engine building] //Kryl'ja Rodiny. 2012. №3–4. S. 34–38.
3. Sposob poluchenija izdelija iz deformiruemogo zharoprochnogo nikelevogo splava [Way of receiving product from deformable heat resisting nickel alloy]: pat. 2387733 Ros. Federacija; opubl. 31.03.2009.
4. Sposob izgotovlenija shtampovok diskov iz slitkov vysokogradientnoj kristallizacii iz nikelevyh splavov [Way of manufacturing of punchings of disks from ingots of high-gradient crystallization from nickel alloys]: pat. 2389822 Ros. Federacija; opubl. 29.04.2009.
5. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaja innovacionnaja tehnologija iz-otermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
6. Orlov M.R. Strategicheskie napravlenija razvitija Ispytatel'nogo centra FGUP «VIAM» [Strategic directions of development of the Test center VIAM Federal State Unitary Enterprise] //Aviacionnye materialy i tehnologii. 2012. №S. S. 387–393.
7. Stepanov A.V. Metody rentgenovskogo nerazrushajushhego kontrolja v proizvodstve aviacionnyh dvigatelej [Methods of x-ray non-destructive testing in production of aircraft engines] //Aviacionnye materialy i tehnologii. 2010. №3. S. 28–32.
8. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharoprochnye nikelevye splavy dlja detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52−57.
9. Orlov M.R., Kolotnikov M.E., Vysotskij A.V. Issledovanie kinetiki ustalostnogo razrushenija diska turbiny vysokogo davlenija iz splava JeP742 [Research of kinetics of fatigue failure of the turbine disk of high pressure from alloy ЭП742] //Deformacija i razrushenie materialov. 2013. №7. S. 7–15.
10. Paris P., Erdogan F. A critical analysis of crack propagation laws //Journal of Basic Engineering. 1963. №85 (4). P. 528–534.
11. Ivanova V.S. Razrushenie metallov [Destruction of metals]. M.: Metallurgija. 1979. 168 s.
12. Tumanov N.V. Fiziko-mehanicheskie aspekty ustojchivogo rosta ustalostnyh treshhin [Physicomechanical aspects of strong growth of fatigue cracks] //Vestnik MATI. 2011. T. 18. №2. S. 132–136.
13. Inozemcev A.A., Ratchiev A.M., Nihamkin M.Sh. i dr. Malociklovaja ustalost' i ciklicheskaja treshhinostojkost' nikelevogo splava pri nagruzhenii, harakternom dlja diskov turbin [Low-cyclic fatigue and cyclic treshchinostoykost of nickel alloy when loading, characteristic for disks of turbines] //Tjazheloe mashinostroenie. 2011. №4. S. 30–33.
14. Nott Dzh. F. Osnovy mehaniki razrushenija [Fracture mechanics bases]: Per. s angl. M.: Metallurgija. 1978. 256 s.
15. Zhang G., Yuan H., Li G. Analysis of creep-fatigue life prediction models for nickel-based super alloys //Computational Materials Science. 2012. №57. P. 80–88.
16. Newman J.C. Jr., Annigeri B.S. Fatigue-Life Prediction Method Based on Small-Crack Theory in an engine Material //Journal of Engineering for Gas Turbines and Power. 2012. V. 134.
P. 032501-1–032501-8.
17. Newman J.C. Jr., Yamada Y. Compression precracking methods to generate near-threshold fatigue-crack-growth-rate data //International Journal of Fatigue. 2010. №32. P. 879–885.
18. Orlov M.R., Orlov E.M. Analiticheskaja ocenka kinetiki relaksacionnyh processov v nikelevom zharoprochnom splave ZhS6U-VI [Analytical assessment of kinetics of relaxation processes in nickel ZhS6U-VI hot strength alloy] //Aviacionno-kosmicheskaja tehnika i tehnologija. 2005. №1/17. S. 26–29.
19. Orlov M.R., Ospennikova O.G., Avtaev V.V. Deformacija i razrushenie monokristallov zharoprochnyh nikelevyh splavov pri kratkovremennom i dlitel'nom staticheskom nagruzhenii [Deformation and destruction of monocrystals of heat resisting nickel alloys at short-term and long static loading] //Deformacija i razrushenie materialov. 2014. №3. S. 17–23.
20. Ospennikova O.G., Orlov M.R., Avtaev V.V. Anizotropija uprugoplasticheskih harakteristik zharoprochnyh nikelevyh splavov – osnova konstruirovanija monokristallicheskih turbinnyh lopatok [Anisotropy of elasto-plastic characteristics of heat resisting nickel alloys – basis of designing of single-crystal turbine blades] //Deformacija i razrushenie materialov. 2013. №11. S. 12–19.
21. Orlov M.R., Ospennikova O.G., Jakimova M.S., Naprienko S.A., Nikitin Ja.Ju. Staticheskoe razrushenie monokristallov zharoprochnyh nikelevyh splavov v uslovijah vozdejstvija korrozionno-aktivnyh sred [Static destruction of monocrystals of heat resisting nickel alloys in the conditions of influence of corrosion and active environments] //Deformacija i razrushenie materialov. 2015. №2. S. 2–8.
22. Orlov M.R., Jakimova M.S., Letov A.F. Analiz rabotosposobnosti monokristallicheskih lopatok turbiny vysokogo davlenija v sostave nazemnyh gazoturbinnyh ustanovok [The analysis of operability of single-crystal turbine blades of high pressure as a part of land gas turbine units] //Aviacionnye materialy i tehnologii. 2012. №S. S. 399–407.
23. Orlov M.R., Jakimova M.S. Zamedlennoe razrushenie monokristallicheskih lopatok iz zharoprochnogo splava ZhS26-VI v processe jekspluatacii GTU [Delayed fracture of single-crystal blades from ZhS26-VI hot strength alloy in use GTU] //Gazoturbinnye tehnologii. 2011. №8. S. 10–15.
2. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh splavov i tehnologij ih proizvodstva dlja aviacionnogo dvigatelestroenija [Creation of modern hot strength alloys and technologies of their production for aviation engine building] //Kryl'ja Rodiny. 2012. №3–4. S. 34–38.
3. Sposob poluchenija izdelija iz deformiruemogo zharoprochnogo nikelevogo splava [Way of receiving product from deformable heat resisting nickel alloy]: pat. 2387733 Ros. Federacija; opubl. 31.03.2009.
4. Sposob izgotovlenija shtampovok diskov iz slitkov vysokogradientnoj kristallizacii iz nikelevyh splavov [Way of manufacturing of punchings of disks from ingots of high-gradient crystallization from nickel alloys]: pat. 2389822 Ros. Federacija; opubl. 29.04.2009.
5. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaja innovacionnaja tehnologija iz-otermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
6. Orlov M.R. Strategicheskie napravlenija razvitija Ispytatel'nogo centra FGUP «VIAM» [Strategic directions of development of the Test center VIAM Federal State Unitary Enterprise] //Aviacionnye materialy i tehnologii. 2012. №S. S. 387–393.
7. Stepanov A.V. Metody rentgenovskogo nerazrushajushhego kontrolja v proizvodstve aviacionnyh dvigatelej [Methods of x-ray non-destructive testing in production of aircraft engines] //Aviacionnye materialy i tehnologii. 2010. №3. S. 28–32.
8. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharoprochnye nikelevye splavy dlja detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52−57.
9. Orlov M.R., Kolotnikov M.E., Vysotskij A.V. Issledovanie kinetiki ustalostnogo razrushenija diska turbiny vysokogo davlenija iz splava JeP742 [Research of kinetics of fatigue failure of the turbine disk of high pressure from alloy ЭП742] //Deformacija i razrushenie materialov. 2013. №7. S. 7–15.
10. Paris P., Erdogan F. A critical analysis of crack propagation laws //Journal of Basic Engineering. 1963. №85 (4). P. 528–534.
11. Ivanova V.S. Razrushenie metallov [Destruction of metals]. M.: Metallurgija. 1979. 168 s.
12. Tumanov N.V. Fiziko-mehanicheskie aspekty ustojchivogo rosta ustalostnyh treshhin [Physicomechanical aspects of strong growth of fatigue cracks] //Vestnik MATI. 2011. T. 18. №2. S. 132–136.
13. Inozemcev A.A., Ratchiev A.M., Nihamkin M.Sh. i dr. Malociklovaja ustalost' i ciklicheskaja treshhinostojkost' nikelevogo splava pri nagruzhenii, harakternom dlja diskov turbin [Low-cyclic fatigue and cyclic treshchinostoykost of nickel alloy when loading, characteristic for disks of turbines] //Tjazheloe mashinostroenie. 2011. №4. S. 30–33.
14. Nott Dzh. F. Osnovy mehaniki razrushenija [Fracture mechanics bases]: Per. s angl. M.: Metallurgija. 1978. 256 s.
15. Zhang G., Yuan H., Li G. Analysis of creep-fatigue life prediction models for nickel-based super alloys //Computational Materials Science. 2012. №57. P. 80–88.
16. Newman J.C. Jr., Annigeri B.S. Fatigue-Life Prediction Method Based on Small-Crack Theory in an engine Material //Journal of Engineering for Gas Turbines and Power. 2012. V. 134.
P. 032501-1–032501-8.
17. Newman J.C. Jr., Yamada Y. Compression precracking methods to generate near-threshold fatigue-crack-growth-rate data //International Journal of Fatigue. 2010. №32. P. 879–885.
18. Orlov M.R., Orlov E.M. Analiticheskaja ocenka kinetiki relaksacionnyh processov v nikelevom zharoprochnom splave ZhS6U-VI [Analytical assessment of kinetics of relaxation processes in nickel ZhS6U-VI hot strength alloy] //Aviacionno-kosmicheskaja tehnika i tehnologija. 2005. №1/17. S. 26–29.
19. Orlov M.R., Ospennikova O.G., Avtaev V.V. Deformacija i razrushenie monokristallov zharoprochnyh nikelevyh splavov pri kratkovremennom i dlitel'nom staticheskom nagruzhenii [Deformation and destruction of monocrystals of heat resisting nickel alloys at short-term and long static loading] //Deformacija i razrushenie materialov. 2014. №3. S. 17–23.
20. Ospennikova O.G., Orlov M.R., Avtaev V.V. Anizotropija uprugoplasticheskih harakteristik zharoprochnyh nikelevyh splavov – osnova konstruirovanija monokristallicheskih turbinnyh lopatok [Anisotropy of elasto-plastic characteristics of heat resisting nickel alloys – basis of designing of single-crystal turbine blades] //Deformacija i razrushenie materialov. 2013. №11. S. 12–19.
21. Orlov M.R., Ospennikova O.G., Jakimova M.S., Naprienko S.A., Nikitin Ja.Ju. Staticheskoe razrushenie monokristallov zharoprochnyh nikelevyh splavov v uslovijah vozdejstvija korrozionno-aktivnyh sred [Static destruction of monocrystals of heat resisting nickel alloys in the conditions of influence of corrosion and active environments] //Deformacija i razrushenie materialov. 2015. №2. S. 2–8.
22. Orlov M.R., Jakimova M.S., Letov A.F. Analiz rabotosposobnosti monokristallicheskih lopatok turbiny vysokogo davlenija v sostave nazemnyh gazoturbinnyh ustanovok [The analysis of operability of single-crystal turbine blades of high pressure as a part of land gas turbine units] //Aviacionnye materialy i tehnologii. 2012. №S. S. 399–407.
23. Orlov M.R., Jakimova M.S. Zamedlennoe razrushenie monokristallicheskih lopatok iz zharoprochnogo splava ZhS26-VI v processe jekspluatacii GTU [Delayed fracture of single-crystal blades from ZhS26-VI hot strength alloy in use GTU] //Gazoturbinnye tehnologii. 2011. №8. S. 10–15.
21.
№5, 2015
УДК 629.113
RATED PILOT STUDIES OF MECHANICS OF DESTRUCTIONS
OF LOAD-CARRYING STRUCTURES OF THE LAND VEHICLES
EXECUTED FROM METAL AND NON-METALLIC MATERIALS
The paper presents the results of computational and experimental research of fracture mechanics of ground vehicles bearing structures (such as shift buses) in emergency static and dynamic loads conditions in accordance with international regulations.
Keywords: elastoplastic fracture, deformation, sandwich panels.
Reference List
1. Vashurin A.S. Razrabotka metodiki i ocenka passivnoj bezopasnosti kuzovov iz mnogoslojnyh panelej vahtovyh avtobusov [Development of technique and assessment of passive safety of bodies from multi-layer panels of crew buses]: dis. kand. teh. nauk. N.-Novgorod. 2014. 225 s.
2. Hercberg R.V. Deformacija i mehanika razrushenija konstrukcionnyh materialov [Deformation and fracture mechanics of constructional materials]. M.: Metallurgija. 1989. 576 s.
3. Kryzhanovskij V.K., Burlov V.V., Panimatchenko A.D., Kryzhanovskaja Ju.V. Tehnicheskie svojstva polimernyh materialov [Engineering properties of polymeric materials]: spravochnik. 2-e izd., dop. SPb.: Professija. 2005. 248 s.
4. Ustrojstvo dlja ispytanij konstrukcionnyh materialov na izgib pri normal'nyh, kriogennyh i povyshennyh temperaturah [The device for tests of constructional materials for bend at normal, cryogenic and elevated temperatures]: pat. na poleznuju model' 135136U1 Ros. Federacija; opubl. 27.11.2013.
2. Hercberg R.V. Deformacija i mehanika razrushenija konstrukcionnyh materialov [Deformation and fracture mechanics of constructional materials]. M.: Metallurgija. 1989. 576 s.
3. Kryzhanovskij V.K., Burlov V.V., Panimatchenko A.D., Kryzhanovskaja Ju.V. Tehnicheskie svojstva polimernyh materialov [Engineering properties of polymeric materials]: spravochnik. 2-e izd., dop. SPb.: Professija. 2005. 248 s.
4. Ustrojstvo dlja ispytanij konstrukcionnyh materialov na izgib pri normal'nyh, kriogennyh i povyshennyh temperaturah [The device for tests of constructional materials for bend at normal, cryogenic and elevated temperatures]: pat. na poleznuju model' 135136U1 Ros. Federacija; opubl. 27.11.2013.
22.
№5, 2015
УДК 621.669.296.011
Mastering of procedure and estimation of threshold stress intensity factor K1н in dhc tests of Zircaloy-4 cladding tube
Proposed new procedure of testing cladding tubes for determination of threshold stress intensity factor (K1н) during delayed hydride cracking (DHC). In the range of temperatures
228–303°C determined temperature dependence K1н and assessment of DHC velocity for the hydrogenated Zircaloy-4 fuel cladding.
Keywords: delayed hydride cracking (DHC), threshold stress intensity factor (K1н), DHC velocity, method, specimen, fuel cladding, load, displacement, crack.
Reference List
1. Markelov V.A. Zamedlennoe gidridnoe rastreskivanie splavov cirkonija: uslovija projavlenija i osnovnye zakonomernosti [The slowed-down gidridny cracking of alloys of zirconium: conditions of manifestation and main patterns] //Deformacija i razrushenie materialov. 2010. №1. S. 31–37.
2. Perryman E.C.W. Pickering Pressure Tube Cracking Experience //Nuclear Energy. 1978. V. 17.
P. 95–105.
3. Platonov P.A., Ryazantseva A.V., Saenko G.P. et al. The Study of Cause of Cracking in Zirconium Alloy Channel Tubes /In: Zirconium in the Nuclear Industry: Poster Paper at ASTM 8th Int. Sympos. 1988 (available as AECL Report RC-87).
4. Schrire D., Grapengiesser B., Hallstadius L. et al. Secondary Defect Behaviour in ABB BWR Fuel /In: Light Water Reactor Fuel Performance: Proc. Int. Topical Meeting. ANS, West Palm Beach. 1994. P. 398–409.
5. Shimada S., Etoh E., Hayashi H., Tukuta Y.A. Metallographic and Fractographic Study of Outside-In Cracking Caused by Power Ramp Test //J. Nucl. Mater. 2004. V. 327. №2. P. 97–113.
6. Coleman C., Inozemtsev V. Measurement of Rates of delayed Hydride Cracking (DHC) in Zr–2.5Nb Alloys – An IAEA Coordinated Research Project /In: Zirconium in the Nuclear Industry: 15th Int. Sympos. ASTM STP 1505. 2009. P. 244–266.
7. Delayed Hydride Cracking in zirconium alloys in pressure tube nuclear reactors /In: IAEA-TECDOC-1410. Vienna. 2004. 86 p.
8. Coleman C., Grigoriev V., Inozemtsev V., Markelov V. et al. The Effect of Microstructure on Delayed Hydride Cracking Behavior of Zircaloy-4 Fuel Cladding – An International Atomic Energy Agency Coordinated Research Programme //J. ASTM Int. 2010. V. 7. №5. Paper ID JAI103008 (Available online at www.astm.org).
9. Delayed Hydride Cracking of Zirconium Alloy Fuel Cladding /In: IAEA-TECDOC-1649. Vienna. 2010. 66 p.
10. Coleman C., Inozemtsev V., Markelov V. et al. The Threshold Stress-Intensity Factor, K1н, for Delayed Hydride Cracking (DHC) in Zircaloy-4 Fuel Cladding – an IAEA Coordinated Research Project (CRP) /Proceedings of 2014 Water Reactor Fuel Performance Meeting / Top Fuel / LWR Fuel Performance Meeting. Sendai. 2014. №100048.
11. Grigoriev V., Josefsson B., Lind A., Rosborg B.A. Pin-Loading Tension Test for Evaluation of Thin-Walled Tubular Materials //Scr. Metall. Mater. 1995. V. 33. №1. P. 109–114.
12. Grigoriev V., Jakobsson R. DHC Axial Crack Velocity Measurements in Zirconium Alloy Fuel Cladding //STUDSVIK/N – 05/281, Studsvik Nuclear AB. 2005.
13. Markelov V.A., Gusev A.Ju., Kotov P.V., Mal'gin A.G. Temperaturnaja zavisimost' i vysokotemperaturnyj predel skorosti zamedlennogo gidridnogo rastreskivanija splavov cirkonija [Temperature dependence and high-temperature limit of speed of the slowed-down gidridny cracking of alloys of zirconium] //Deformacija i razrushenie materialov. 2011. №8. S. 24–30.
14. Markelov V.A., Gusev A.Ju., Kotov P.V., Novikov V.V., Saburov N.S. Temperaturnye zavisimosti skorosti zamedlennogo gidridnogo rastreskivanija obolochek tvjelov iz splavov cirkonija razlichnogo sostava [Temperature dependences of speed of the slowed-down gidridny cracking of covers tvelov from alloys of zirconium of different structure]//Deformacija i razrushenie materialov. 2012. №11. S. 42–47.
15. Resta Levi M., Puls M.P. DHC Behaviour of Irradiated Zr–2.5Nb Pressure Tubes up to 365°C /Proc. of the 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18). Beijing. 2006. P. G10-3.
2. Perryman E.C.W. Pickering Pressure Tube Cracking Experience //Nuclear Energy. 1978. V. 17.
P. 95–105.
3. Platonov P.A., Ryazantseva A.V., Saenko G.P. et al. The Study of Cause of Cracking in Zirconium Alloy Channel Tubes /In: Zirconium in the Nuclear Industry: Poster Paper at ASTM 8th Int. Sympos. 1988 (available as AECL Report RC-87).
4. Schrire D., Grapengiesser B., Hallstadius L. et al. Secondary Defect Behaviour in ABB BWR Fuel /In: Light Water Reactor Fuel Performance: Proc. Int. Topical Meeting. ANS, West Palm Beach. 1994. P. 398–409.
5. Shimada S., Etoh E., Hayashi H., Tukuta Y.A. Metallographic and Fractographic Study of Outside-In Cracking Caused by Power Ramp Test //J. Nucl. Mater. 2004. V. 327. №2. P. 97–113.
6. Coleman C., Inozemtsev V. Measurement of Rates of delayed Hydride Cracking (DHC) in Zr–2.5Nb Alloys – An IAEA Coordinated Research Project /In: Zirconium in the Nuclear Industry: 15th Int. Sympos. ASTM STP 1505. 2009. P. 244–266.
7. Delayed Hydride Cracking in zirconium alloys in pressure tube nuclear reactors /In: IAEA-TECDOC-1410. Vienna. 2004. 86 p.
8. Coleman C., Grigoriev V., Inozemtsev V., Markelov V. et al. The Effect of Microstructure on Delayed Hydride Cracking Behavior of Zircaloy-4 Fuel Cladding – An International Atomic Energy Agency Coordinated Research Programme //J. ASTM Int. 2010. V. 7. №5. Paper ID JAI103008 (Available online at www.astm.org).
9. Delayed Hydride Cracking of Zirconium Alloy Fuel Cladding /In: IAEA-TECDOC-1649. Vienna. 2010. 66 p.
10. Coleman C., Inozemtsev V., Markelov V. et al. The Threshold Stress-Intensity Factor, K1н, for Delayed Hydride Cracking (DHC) in Zircaloy-4 Fuel Cladding – an IAEA Coordinated Research Project (CRP) /Proceedings of 2014 Water Reactor Fuel Performance Meeting / Top Fuel / LWR Fuel Performance Meeting. Sendai. 2014. №100048.
11. Grigoriev V., Josefsson B., Lind A., Rosborg B.A. Pin-Loading Tension Test for Evaluation of Thin-Walled Tubular Materials //Scr. Metall. Mater. 1995. V. 33. №1. P. 109–114.
12. Grigoriev V., Jakobsson R. DHC Axial Crack Velocity Measurements in Zirconium Alloy Fuel Cladding //STUDSVIK/N – 05/281, Studsvik Nuclear AB. 2005.
13. Markelov V.A., Gusev A.Ju., Kotov P.V., Mal'gin A.G. Temperaturnaja zavisimost' i vysokotemperaturnyj predel skorosti zamedlennogo gidridnogo rastreskivanija splavov cirkonija [Temperature dependence and high-temperature limit of speed of the slowed-down gidridny cracking of alloys of zirconium] //Deformacija i razrushenie materialov. 2011. №8. S. 24–30.
14. Markelov V.A., Gusev A.Ju., Kotov P.V., Novikov V.V., Saburov N.S. Temperaturnye zavisimosti skorosti zamedlennogo gidridnogo rastreskivanija obolochek tvjelov iz splavov cirkonija razlichnogo sostava [Temperature dependences of speed of the slowed-down gidridny cracking of covers tvelov from alloys of zirconium of different structure]//Deformacija i razrushenie materialov. 2012. №11. S. 42–47.
15. Resta Levi M., Puls M.P. DHC Behaviour of Irradiated Zr–2.5Nb Pressure Tubes up to 365°C /Proc. of the 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18). Beijing. 2006. P. G10-3.
23.
№5, 2015
УДК 620.192.6
COMPARATIVE ANALYSIS OF RESULTS THE AUTOMATED NONDESTRUCTIVE CONTROL
Questions of accuracy determination areas of defects by automation process nondestructive control is very important, that be needed analysis process of scanning in point of view evaluation highest possible result nondestructive testing. In this article examine question calculation precision space artificial flaw by automatize ultrasonic flaw detection construction with noncontact passing method. To be execute theoretical calculation possible error flaw area by use scanning system. Showing experimental facts, complete estimate measurement inaccuracy. Execute critical evaluation of final result working data.
Keywords: noncontact flaw detection, automation, precision flaw evaluation.
Reference List
1. Shherbinskij V.G. O vozmozhnosti bezobrazcovoj apriornoj validacii metodik ul'trazvukovogo kontrolja [About possibility of bezobraztsovy apriori validation of techniques of ultrasonic control] //Defektoskopija. 2012. №11. S. 14–31.
2. OST 92-1482–79. Materialy nemetallicheskie teplozashhitnogo i konstrukcionnogo naznachenija. Metody nerazrushajushhego kontrolja tolshhiny, vyjavlenie neprikleja i rassloenij [Materials nonmetallic heat-protective and constructional assignment. Methods of non-destructive testing of thickness, identification neprikleya and stratifications].
2. OST 92-1482–79. Materialy nemetallicheskie teplozashhitnogo i konstrukcionnogo naznachenija. Metody nerazrushajushhego kontrolja tolshhiny, vyjavlenie neprikleja i rassloenij [Materials nonmetallic heat-protective and constructional assignment. Methods of non-destructive testing of thickness, identification neprikleya and stratifications].
24.
№5, 2015
УДК 621.787:539.319
The computing-experimental method of surface hardened
parts endurance limit prediction
The possibility of cylindrical specimens made of steel 30ХГСА and D16-T alloy with circular cuts of 0,3 mm radius endurance limit prediction after outstripping superficial plastic deforming (hydro shot blasting) by the residual stresses (initial deformations) of reference specimens (bushes of 51,5/45 mm/mm diameter) hardened simultaneously with the smooth specimens has been examined using the computing-experimental method carried out by the authors. The difference between the compressive residual stresses calculated for the cut specimens by the initial deformations of reference specimens and the experimentally found ones doesn’t exceed 6%. Hardened specimens with the cuts endurance limit increases have been calculated using the average integral residual stresses criterion. It’s established that the values of the cut specimens endurance limit increase under bending in the case of symmetric cycle calculated using the carried out computing-experimental method differ from the experimental
Keywords: surface hardening, endurance limit, reference specimen, initial deformations.
Reference List
1. Pavlov V.F. O svjazi ostatochnyh naprjazhenij i predela vynoslivosti pri izgibe v uslovijah koncentracii naprjazhenij [About communication of residual stresses and endurance limit at bend in the conditions of concentration of tension] //Izvestija vuzov. Ser. Mashinostroenie. 1986. №8. S. 29–32.
2. Pavlov V.F. Vlijanie na predel vynoslivosti velichiny i raspredelenija ostatochnyh naprjazhenij v poverhnostnom sloe detali s koncentratorom. Soobshhenie I. Sploshnye detali [Influence on limit of endurance of size and distribution of residual stresses in detail surface layer with the concentrator. Message of I. Continuous details] //Izvestija vuzov. Ser. Mashinostroenie. 1988. №8. S. 22–26.
3. Pavlov V.F. Vlijanie na predel vynoslivosti velichiny i raspredelenija ostatochnyh naprjazhenij v poverhnostnom sloe detali s koncentratorom. Soobshhenie II. Polye detali [Influence on limit of endurance of size and distribution of residual stresses in detail surface layer with the concentrator. Message of II. Hollow parts] //Izvestija vuzov. Ser. Mashinostroenie. 1988. №12. S. 37–40.
4. Ivanov S.I., Pavlov V.F., Konovalov G.V., Minin B.V. Tehnologicheskie ostatochnye naprjazhenija i soprotivlenie ustalosti aviacionnyh rez'bovyh detalej [Technological residual stresses and resistance of fatigue of aviation threaded details]. M.: MAP. 1992. 192 s. (Ser. Otraslevaja biblioteka «Tehnicheskij progress i povyshenie kvalifikacii»).
5. Radchenko V.P., Afanas'eva O.S. Metodika rascheta predela vynoslivosti uprochnennyh cilindricheskih obrazcov s koncentratorami naprjazhenij pri temperaturnyh vyderzhkah v uslovijah polzuchesti [Method of calculation of limit of endurance of the strengthened cylindrical samples with concentrators of tension at temperature excerpts in the conditions of creep] //Vestnik SamGTU. Ser. Fiz.-mat. nauki. 2009. №2 (19). S. 264–268.
6. Pavlov V.F., Kirpichev V.A., Vakuljuk V.S. Prognozirovanie soprotivlenija ustalosti poverhnostno uprochnennyh detalej po ostatochnym naprjazhenijam [Forecasting of resistance of fatigue of superficially strengthened details on residual stresses]. Samara: Izd-vo SNC RAN. 2012. 125 s.
7. Vakuljuk V.S. Soprotivlenie ustalosti detali v zavisimosti ot tolshhiny uprochnennogo sloja pri operezhajushhem poverhnostnom plasticheskom deformirovanii [Resistance of fatigue of detail depending on thickness of the strengthened layer at advancing surface plastic deformation] //Vestnik SGAU. 2012. №3(34). S. 172–176.
8. Kirpichev V.A., Saushkin M.N., Sazanov V.P., Semenova O.Ju. Ostatochnye naprjazhenija i soprotivlenie ustalosti obrazcov s V-obraznymi nadrezami iz stali VNS40 Ch. 1 [Residual stresses and resistance of fatigue of samples with V-shaped cuts from BHC40 steel P.1] //Vestnik SGAU. 2012. №5 (36). S. 95–99.
9. Serensen S.V., Borisov S.P., Borodin N.A. K voprosu ob ocenke soprotivlenija ustalosti poverhnostno uprochnennyh obrazcov s uchetom kinetiki ostatochnoj naprjazhennosti [To question of assessment of resistance of fatigue of superficially strengthened samples taking into account kinetics of residual strength] //Problemy prochnosti. 1969. №2. S. 3–7.
10. Turovskij M.L., Shifrin N.M. Koncentracija naprjazhenij v poverhnostnom sloe cementirovannoj stali [Concentration of tension in cemented steel surface layer] //Vestnik mashinostroenija. 1970. №11. S. 37–40.
11. Ivanov S.I., Pavlov V.F. Vlijanie ostatochnyh naprjazhenij i naklepa na ustalostnuju prochnost' [Influence of residual stresses and peening on fatigue resistance] //Problemy prochnosti. 1976. №5. S. 25–27.
12. Ivanov S.I., Pavlov V.F., Prohorov A.A. Vlijanie ostatochnyh naprjazhenij na soprotivlenie ustalosti pri kruchenii v uslovijah koncentracii naprjazhenij [Influence of residual stresses on fatigue resistance at torsion in the conditions of concentration of tension] //Problemy prochnosti. 1988. №5. S. 31–33.
13. Pavlov V.F., Prohorov A.A. Svjaz' ostatochnyh naprjazhenij i predela vynoslivosti pri kruchenii v uslovijah koncentracii naprjazhenij [Communication of residual stresses and endurance limit at torsion in the conditions of concentration of tension] //Problemy prochnosti. 1991. №5. S. 43–46.
14. Kirpichev V.A., Bukatyj A.S., Chirkov A.V. Prognozirovanie soprotivlenija ustalosti poverhnostno uprochnennyh gladkih detalej [Forecasting of resistance of fatigue of superficially strengthened smooth details] //Izvestija vuzov. Povolzhskij region. Tehnicheskie nauki. 2012. №3 (23). S. 102–107.
15. Ivanov S.I. K opredeleniju ostatochnyh naprjazhenij v cilindre metodom kolec i polosok [To determination of residual stresses in the cylinder method of rings and strips] //Ostatochnye naprjazhenija. Kujbyshev: KuAI. 1971. Vyp. 53. S. 32–42.
16. Birger I.A. Ostatochnye naprjazhenija [Residual stresses]. M.: Mashgiz. 1963. 232 s.
17. Struzhanov V.V. Ob ostatochnyh naprjazhenijah posle prokatki i rassloenii dvuhslojnyh polos [About residual stresses after rolling and stratification of two-layer strips] //Vestnik SamGTU. Ser. Fiz.-mat. nauki. 2010. №5 (21). S. 55–63.
18. Sazanov V.P., Chirkov A.V., Samojlov V.A., Larionova Ju.S. Modelirovanie pereraspredelenija ostatochnyh naprjazhenij v uprochnennyh cilindricheskih obrazcah pri operezhajushhem poverhnostnom plasticheskom deformirovanii Р. 3 [Modeling of redistribution of residual stresses in the strengthened cylindrical samples at advancing surface plastic deformation of H. 3] //Vestnik SGAU. 2011. №3 (27). S. 171–174.
19. Pavlov V.F., Stoljarov A.K., Vakuljuk V.S., Kirpichev V.A. Raschet ostatochnyh naprjazhenij v detaljah s koncentratorami naprjazhenij po pervonachal'nym deformacijam [Calculation of residual stresses in details with concentrators of tension on initial deformations]. Samara: Izd-vo SNC RAN. 2008. 124 s.
20. Vakuljuk V.S. Issledovanie vlijanija tolshhiny uprochnennogo sloja na ostatochnye naprjazhenija vo vpadine koncentratora metodom pervonachal'nyh deformacij [Research of influence of thickness of the strengthened layer on residual stresses in concentrator hollow method of initial deformations] //Vestnik SamGTU. Ser. Fiz.-mat. nauki. 2010. №1 (20). S. 222–225.
21. Saushkin M.N., Radchenko V.P., Pavlov V.F. Metod rascheta polej ostatochnyh naprjazhenij i plasticheskih deformacij v cilindricheskih obrazcah s uchetom anizotropii poverhnostnogo uprochnenija [Method of calculation of fields of residual stresses and plastic strains in cylindrical samples taking into account anisotropy of surface strengthening] //Prikladnaja mehanika i tehnicheskaja fizika. 2011. T. 52. №2. S. 173–182.
22. Ivanov S.I., Shatunov M.P., Pavlov V.F. Vlijanie ostatochnyh naprjazhenij na vynoslivost' obrazcov s nadrezom [Influence of residual stresses on endurance of samples with cut] /V kn. Voprosy prochnosti jelementov aviacionnyh konstrukcij: Mezhvuzov. sb. Vyp. 3. Kujbyshev: KuAI. 1974. S. 88–95.
23. Sazanov V.P. Issledovanie raspredelenija komponentov ostatochnogo naprjazhennogo sostojanija v oblasti naimen'shego sechenija poverhnostno uprochnennoj detali s kol'cevym nadrezom metodom konechno-jelementnogo modelirovanija [Research of distribution of components of residual tension in the field of the smallest section of superficially strengthened detail with ring cut method of final and element modeling] //Vestnik SGAU. 2012. №3 (34). S. 158–161.
24. Sazanov V.P., Chirkov A.V., Semenova O.Ju., Ivanova A.V. Modelirovanie ostatochnogo naprjazhennogo sostojanija detali v uslovijah koncentracii naprjazhenij s ispol'zovaniem programmnogo kompleksa PATRAN/NASTRAN [Modeling of residual tension of detail in the conditions of concentration of tension with use of the program PATRAN/NASTRAN complex] //Vestnik SamGTU. Ser. Tehnich. nauki. 2012. №1 (33). S. 106–114.
25. Kirpichev V.A., Bukatyj A.S., Filatov A.P., Chirkov A.V. Prognozirovanie predela vynoslivosti poverhnostno uprochnennyh detalej pri razlichnoj stepeni koncentracii naprjazhenij [Forecasting of limit of endurance of superficially strengthened details at different degree of concentration of tension] //Vestnik UGATU. 2011. T. 15. №4 (44). S. 81–85.
26. Peterson R.E. Kojefficienty koncentracii naprjazhenij [Factors of concentration of tension]. M.: Mir. 1977. 304 s.
2. Pavlov V.F. Vlijanie na predel vynoslivosti velichiny i raspredelenija ostatochnyh naprjazhenij v poverhnostnom sloe detali s koncentratorom. Soobshhenie I. Sploshnye detali [Influence on limit of endurance of size and distribution of residual stresses in detail surface layer with the concentrator. Message of I. Continuous details] //Izvestija vuzov. Ser. Mashinostroenie. 1988. №8. S. 22–26.
3. Pavlov V.F. Vlijanie na predel vynoslivosti velichiny i raspredelenija ostatochnyh naprjazhenij v poverhnostnom sloe detali s koncentratorom. Soobshhenie II. Polye detali [Influence on limit of endurance of size and distribution of residual stresses in detail surface layer with the concentrator. Message of II. Hollow parts] //Izvestija vuzov. Ser. Mashinostroenie. 1988. №12. S. 37–40.
4. Ivanov S.I., Pavlov V.F., Konovalov G.V., Minin B.V. Tehnologicheskie ostatochnye naprjazhenija i soprotivlenie ustalosti aviacionnyh rez'bovyh detalej [Technological residual stresses and resistance of fatigue of aviation threaded details]. M.: MAP. 1992. 192 s. (Ser. Otraslevaja biblioteka «Tehnicheskij progress i povyshenie kvalifikacii»).
5. Radchenko V.P., Afanas'eva O.S. Metodika rascheta predela vynoslivosti uprochnennyh cilindricheskih obrazcov s koncentratorami naprjazhenij pri temperaturnyh vyderzhkah v uslovijah polzuchesti [Method of calculation of limit of endurance of the strengthened cylindrical samples with concentrators of tension at temperature excerpts in the conditions of creep] //Vestnik SamGTU. Ser. Fiz.-mat. nauki. 2009. №2 (19). S. 264–268.
6. Pavlov V.F., Kirpichev V.A., Vakuljuk V.S. Prognozirovanie soprotivlenija ustalosti poverhnostno uprochnennyh detalej po ostatochnym naprjazhenijam [Forecasting of resistance of fatigue of superficially strengthened details on residual stresses]. Samara: Izd-vo SNC RAN. 2012. 125 s.
7. Vakuljuk V.S. Soprotivlenie ustalosti detali v zavisimosti ot tolshhiny uprochnennogo sloja pri operezhajushhem poverhnostnom plasticheskom deformirovanii [Resistance of fatigue of detail depending on thickness of the strengthened layer at advancing surface plastic deformation] //Vestnik SGAU. 2012. №3(34). S. 172–176.
8. Kirpichev V.A., Saushkin M.N., Sazanov V.P., Semenova O.Ju. Ostatochnye naprjazhenija i soprotivlenie ustalosti obrazcov s V-obraznymi nadrezami iz stali VNS40 Ch. 1 [Residual stresses and resistance of fatigue of samples with V-shaped cuts from BHC40 steel P.1] //Vestnik SGAU. 2012. №5 (36). S. 95–99.
9. Serensen S.V., Borisov S.P., Borodin N.A. K voprosu ob ocenke soprotivlenija ustalosti poverhnostno uprochnennyh obrazcov s uchetom kinetiki ostatochnoj naprjazhennosti [To question of assessment of resistance of fatigue of superficially strengthened samples taking into account kinetics of residual strength] //Problemy prochnosti. 1969. №2. S. 3–7.
10. Turovskij M.L., Shifrin N.M. Koncentracija naprjazhenij v poverhnostnom sloe cementirovannoj stali [Concentration of tension in cemented steel surface layer] //Vestnik mashinostroenija. 1970. №11. S. 37–40.
11. Ivanov S.I., Pavlov V.F. Vlijanie ostatochnyh naprjazhenij i naklepa na ustalostnuju prochnost' [Influence of residual stresses and peening on fatigue resistance] //Problemy prochnosti. 1976. №5. S. 25–27.
12. Ivanov S.I., Pavlov V.F., Prohorov A.A. Vlijanie ostatochnyh naprjazhenij na soprotivlenie ustalosti pri kruchenii v uslovijah koncentracii naprjazhenij [Influence of residual stresses on fatigue resistance at torsion in the conditions of concentration of tension] //Problemy prochnosti. 1988. №5. S. 31–33.
13. Pavlov V.F., Prohorov A.A. Svjaz' ostatochnyh naprjazhenij i predela vynoslivosti pri kruchenii v uslovijah koncentracii naprjazhenij [Communication of residual stresses and endurance limit at torsion in the conditions of concentration of tension] //Problemy prochnosti. 1991. №5. S. 43–46.
14. Kirpichev V.A., Bukatyj A.S., Chirkov A.V. Prognozirovanie soprotivlenija ustalosti poverhnostno uprochnennyh gladkih detalej [Forecasting of resistance of fatigue of superficially strengthened smooth details] //Izvestija vuzov. Povolzhskij region. Tehnicheskie nauki. 2012. №3 (23). S. 102–107.
15. Ivanov S.I. K opredeleniju ostatochnyh naprjazhenij v cilindre metodom kolec i polosok [To determination of residual stresses in the cylinder method of rings and strips] //Ostatochnye naprjazhenija. Kujbyshev: KuAI. 1971. Vyp. 53. S. 32–42.
16. Birger I.A. Ostatochnye naprjazhenija [Residual stresses]. M.: Mashgiz. 1963. 232 s.
17. Struzhanov V.V. Ob ostatochnyh naprjazhenijah posle prokatki i rassloenii dvuhslojnyh polos [About residual stresses after rolling and stratification of two-layer strips] //Vestnik SamGTU. Ser. Fiz.-mat. nauki. 2010. №5 (21). S. 55–63.
18. Sazanov V.P., Chirkov A.V., Samojlov V.A., Larionova Ju.S. Modelirovanie pereraspredelenija ostatochnyh naprjazhenij v uprochnennyh cilindricheskih obrazcah pri operezhajushhem poverhnostnom plasticheskom deformirovanii Р. 3 [Modeling of redistribution of residual stresses in the strengthened cylindrical samples at advancing surface plastic deformation of H. 3] //Vestnik SGAU. 2011. №3 (27). S. 171–174.
19. Pavlov V.F., Stoljarov A.K., Vakuljuk V.S., Kirpichev V.A. Raschet ostatochnyh naprjazhenij v detaljah s koncentratorami naprjazhenij po pervonachal'nym deformacijam [Calculation of residual stresses in details with concentrators of tension on initial deformations]. Samara: Izd-vo SNC RAN. 2008. 124 s.
20. Vakuljuk V.S. Issledovanie vlijanija tolshhiny uprochnennogo sloja na ostatochnye naprjazhenija vo vpadine koncentratora metodom pervonachal'nyh deformacij [Research of influence of thickness of the strengthened layer on residual stresses in concentrator hollow method of initial deformations] //Vestnik SamGTU. Ser. Fiz.-mat. nauki. 2010. №1 (20). S. 222–225.
21. Saushkin M.N., Radchenko V.P., Pavlov V.F. Metod rascheta polej ostatochnyh naprjazhenij i plasticheskih deformacij v cilindricheskih obrazcah s uchetom anizotropii poverhnostnogo uprochnenija [Method of calculation of fields of residual stresses and plastic strains in cylindrical samples taking into account anisotropy of surface strengthening] //Prikladnaja mehanika i tehnicheskaja fizika. 2011. T. 52. №2. S. 173–182.
22. Ivanov S.I., Shatunov M.P., Pavlov V.F. Vlijanie ostatochnyh naprjazhenij na vynoslivost' obrazcov s nadrezom [Influence of residual stresses on endurance of samples with cut] /V kn. Voprosy prochnosti jelementov aviacionnyh konstrukcij: Mezhvuzov. sb. Vyp. 3. Kujbyshev: KuAI. 1974. S. 88–95.
23. Sazanov V.P. Issledovanie raspredelenija komponentov ostatochnogo naprjazhennogo sostojanija v oblasti naimen'shego sechenija poverhnostno uprochnennoj detali s kol'cevym nadrezom metodom konechno-jelementnogo modelirovanija [Research of distribution of components of residual tension in the field of the smallest section of superficially strengthened detail with ring cut method of final and element modeling] //Vestnik SGAU. 2012. №3 (34). S. 158–161.
24. Sazanov V.P., Chirkov A.V., Semenova O.Ju., Ivanova A.V. Modelirovanie ostatochnogo naprjazhennogo sostojanija detali v uslovijah koncentracii naprjazhenij s ispol'zovaniem programmnogo kompleksa PATRAN/NASTRAN [Modeling of residual tension of detail in the conditions of concentration of tension with use of the program PATRAN/NASTRAN complex] //Vestnik SamGTU. Ser. Tehnich. nauki. 2012. №1 (33). S. 106–114.
25. Kirpichev V.A., Bukatyj A.S., Filatov A.P., Chirkov A.V. Prognozirovanie predela vynoslivosti poverhnostno uprochnennyh detalej pri razlichnoj stepeni koncentracii naprjazhenij [Forecasting of limit of endurance of superficially strengthened details at different degree of concentration of tension] //Vestnik UGATU. 2011. T. 15. №4 (44). S. 81–85.
26. Peterson R.E. Kojefficienty koncentracii naprjazhenij [Factors of concentration of tension]. M.: Mir. 1977. 304 s.
25.
№5, 2015
УДК 621.45:629.76:620.49.
Features of growth of cracks in the pipeline unloadings of the booster pump of fuel ZhRD
It is shown that the fracture of pipelines occur on the fatigue mechanism. Finite element method of calculation of the SDC (stress deformation condition) pipeline under the influence of internal pressure was used. The mechanism of crack growth, and it is shown that the main cause of the fracture were of the dynamic stresses are high-level, dependent of the internal pressure and the size of oval tube bends in the pipeline. It was found that the conduit having a bend in the pipe ovality of not more than 0,4 mm has a grate resource when CT (control tests), of not less than 3600 s.
Keywords: pipeline, ovality of pipeline, fatigue cracks, pressure impulses, cavitations wear.
Reference List
. Logocheva E.V., Poljanskij A.M., Poljanskij V.M., Sarafaslanjan H.B. O povyshenii ustalostnoj prochnosti truboprovodov ZhRD [About increase of fatigue resistance of ZhRD pipelines] /Trudy NPO Jenergomash. 2011. №28. S. 70–78.
2. Kishkina S.I. Soprotivlenie razrusheniju aljuminievyh splavov [Failure resistance of aluminum alloys]. M.: Metallurgija. 1981. 280 s.
3. Spravochnik po kojefficientam intensivnosti naprjazhenij [Directory on factors of intensity of tension] /Pod red. Ju. Murakami. T. 2. M.: Mir. 1990. S. 554–560.
2. Kishkina S.I. Soprotivlenie razrusheniju aljuminievyh splavov [Failure resistance of aluminum alloys]. M.: Metallurgija. 1981. 280 s.
3. Spravochnik po kojefficientam intensivnosti naprjazhenij [Directory on factors of intensity of tension] /Pod red. Ju. Murakami. T. 2. M.: Mir. 1990. S. 554–560.
26.
№5, 2015
УДК 620.179.18:620.172.2
Express mechanical characteristics control of aluminum alloys and their welds
A new method of aluminum alloys and their welded joints mechanical properties determination is developed. The method is based on the instrumented indentation test with the registration of “load – displacement” curve during loading and unloading. This method allows to evaluate the yield stress, ultimate stress and ultimate uniform elongation of metal in local zones of welded joints as well as to find the weakest area in the joint. The experimental approbation of the proposed method on hardenable and non-hardenable aluminum alloys was realized.
Keywords: aluminum alloys, mechanical characteristics, indentation diagrams.
Reference List
1. Markovec M.P. Opredelenie mehanicheskih svojstv metallov po tverdosti [Determination of mechanical properties of metals on hardness]. M.: Mashinostroenie. 1979. 191 s.
2. Matjunin V.M. Operativnaja diagnostika mehanicheskih svojstv konstrukcionnyh materialov [Operational diagnostics of mechanical properties of constructional materials]. M.: Izdatel'skij dom MJeI. 2006. 216 s.
3. Sposob opredelenija mehanicheskih harakteristik materialov [Way of definition of mechanical characteristics of materials]: pat. 2451282 Ros. Federacija; zajavl. 26.10.10; opubl. 20.05.12.
4. ISO 14577-1:2002 «Metallic materials – Instrumented indentation test for hardness and materials parameters – Part 1: Test method».
5. Fedosov S.A., Peshek L. Opredelenie mehanicheskih svojstv materialov mikroindentirovaniem [Determination of mechanical properties of materials by microindenting]. M.: MGU im. M.V. Lomonosova. 2004. 98 s.
6. Matyunin V.M., Dubov A.A., Marchenkov A.Yu. Regularities in the manifestation of the scale factor during determination of the strength and hardness of a metal //Inorganic materials. 2011. V. 47. №15. P. 78–83.
7. Matjunin V.M. Razmernyj jeffekt i ego vlijanie na mehanicheskie svojstva materialov [Size effect and its influence on mechanical properties of materials] //Zavodskaja laboratorija. Diagnostika materialov. 2012. №2. S. 64–68.
8. Golovin Ju.I. Nanoindentirovanie i ego vozmozhnosti [Nanoindenting and its opportunities]. M.: Mashinostroenie. 2009. 312 s.
2. Matjunin V.M. Operativnaja diagnostika mehanicheskih svojstv konstrukcionnyh materialov [Operational diagnostics of mechanical properties of constructional materials]. M.: Izdatel'skij dom MJeI. 2006. 216 s.
3. Sposob opredelenija mehanicheskih harakteristik materialov [Way of definition of mechanical characteristics of materials]: pat. 2451282 Ros. Federacija; zajavl. 26.10.10; opubl. 20.05.12.
4. ISO 14577-1:2002 «Metallic materials – Instrumented indentation test for hardness and materials parameters – Part 1: Test method».
5. Fedosov S.A., Peshek L. Opredelenie mehanicheskih svojstv materialov mikroindentirovaniem [Determination of mechanical properties of materials by microindenting]. M.: MGU im. M.V. Lomonosova. 2004. 98 s.
6. Matyunin V.M., Dubov A.A., Marchenkov A.Yu. Regularities in the manifestation of the scale factor during determination of the strength and hardness of a metal //Inorganic materials. 2011. V. 47. №15. P. 78–83.
7. Matjunin V.M. Razmernyj jeffekt i ego vlijanie na mehanicheskie svojstva materialov [Size effect and its influence on mechanical properties of materials] //Zavodskaja laboratorija. Diagnostika materialov. 2012. №2. S. 64–68.
8. Golovin Ju.I. Nanoindentirovanie i ego vozmozhnosti [Nanoindenting and its opportunities]. M.: Mashinostroenie. 2009. 312 s.
27.
№3, 2015
УДК 669.058
N.I. Artemenko1, V.N. Simonov2, D.A. Aleksandrov1
ASSESSMENT OF THE RELATIVE WEAR RESISTANCE OF ION-PLASMA FUSED COATINGS ON VT8 AND EP742 ALLOYS
The paper presents test data on the wear resistance of coatings. The tests were conducted according to
ASTM G99-05. The coatings were deposited by ion-plasma method on samples of alloys VT8 and EP742. Coating with high relative wear resistance were selected, the regularities of high adhesive strength of coatings were detected.
Keywords: wear resistance testing, titanium alloys, ion-plasma method, plasma-chemical method.
Reference List
1. Inozemcev A.A., Sandrackiy V.L. Gazoturbinnye dvigateli [Gas turbine engines]. Perm': OAO «Aviadvigatel'». 2006. 1204 s.
2. Abraimov N.V. Vysokotemperaturnye materialy i pokrytiya dlya gazovyh turbin [High-temperature materials and coverings for gas turbines]. M.: Mashinostroenie. 1993. 336 s.
3. Spravochnik po aviacionnym materialam [Directory on aviation materials]. 5-e izd. T. 2. Cvetnye splavy /Pod red. A.T. Tumanova. M.: Oborongiz. 1958. 528 s.
4. Aviacionnye materialy [Aviation materials]: Spravochnik v devyati tomah. 6-e izd. pererab. i dop. T. 3. CH. 1. Deformiruemye zharoprochnye stali i splavy /Pod red. R.E. Shalina. M.: ONTI VIAM. 1989. 568 s.
5. Chichinadze A.V., Braun EH.D., Bushe N.A. i dr. Osnovy tribologii (trenie, iznos, smazka) [Tribologiya bases (friction, wear, lubricant)]. M.: Mashinostroenie. 2001. 664 s.
6. Samsonov G.V., Vinickiy I.M. Tugoplavkie soedineniya [High-melting connections]. M.: Metallurgiya. 1976. 560 s.
7. Ryahovskiy O.A., Klypin A.V. Detali mashin [Details of machines]. M.: Drofa. 2002. 288 s.
8. Andrienko L.A., Baykov B.A., Ganulich I.K. Detali mashin [Details of machines]: Ucheb. dlya vuzov. M.: Izd-vo MGTU im. N.EH. Baumana. 2002. 544 s.
9. Lyashchenko A.B., Mel'nichuk P.I., Francevich I.N. Metallurgiya vol'frama [Tungsten metallurgy]
//Poroshkovaya metallurgiya. 1961. №5. S. 10–14.
10. Rybakova L.M., Kuksenova L.I. Struktura i iznosostoykkost' metalla [Structure and wear resistance of metal]. M.: Mashinostroenie. 1982. 212 s.
11. Muboyadzhyan S.A. Osobennosti osazhdeniya potoka mnogokomponentnoy plazmy vakuumno-dugovogo razryada, soderzhashchego mikrokapli isparyaemogo materiala [Features of sedimentation of flow of multicomponent plasma of the vacuum arc discharge containing microdrops of evaporated material] //Metally. 2008. №2. S. 20–34.
12. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye liteynye zharoprochnye splavy novogo pokoleniya [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tekhnologii. 2012. №S. S. 36–52.
13. Bazyleva O.A., Arginbaeva Eh.G., Turenko E.Yu. Zharoprochnye liteynye intermetallidnye splavy [Heat resisting cast intermetallidny alloys] //Aviacionnye materialy i tekhnologii. 2012. №S. S. 57–60.
14. Kablov E.N., Muboyadzhyan S.A. Zharostoykie i teplozashchitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTD] //Aviacionnye materialy i tekhnologii. 2012. №S. S. 60–70.
15. Matveev P.V., Budinovskiy S.A., Muboyadzhyan S.A., Kos'min A.A. Zashchitnye zharostoykie pokrytiya dlya splavov na osnove intermetallidov nikelya [Protective heat resisting coverings for alloys on the basis of nickel intermetallic compound] //Aviacionnye materialy i tekhnologii. 2013. №2. S. 12–15.
16. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S. Nanosloynye uprochnyayushchie pokrytiya dlya zashchity stal'nyh i titanovyh lopatok kompressora GTD [Nanolayer strengthening coverings for protection of steel and titanic compressor blades of GTD] //Aviacionnye materialy i tekhnologii. 2011. №3. S. 3–8.
17. Budinovskiy S.A., Muboyadzhyan S.A., Gayamov A.M., Stepanova S.V. Ionno-plazmennye zharostoykie pokrytiya s kompozicionnym bar'ernym sloem dlya zashchity ot okisleniya splava ZHS36VI [Ion-plasma heat resisting coverings with composition barrier layer for protection against oxidation of alloy ЖС36ВИ]
//MiTOM. 2011. №1. S. 34–40.
18. Gayamov A.M. Zharostoykoe pokrytie s kompozicionnym bar'ernym sloem dlya zashchity vneshney poverhnosti rabochih lopatok GTD iz reniysoderzhashchih zharoprochnyh nikelevyh splavov [Heat resisting covering with composition barrier layer for protection of exterior surface of working blades of GTD from reniysoderzhashchy heat resisting nickel alloys] /V sb. materialov XI Rossiyskoy ezhegodnoy konf. molodyh nauchnyh sotrudnikov i aspirantov «Fiziko-himiya i tekhnologiya neorganicheskih materialov». M.: IMET RAN. 2012. C. 473–475.
19. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashchitnye i uprochnyayushchie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detaley kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTD compressor] //Aviacionnye materialy i tekhnologii. 2012. №S. S. 71–81.
20. Muboyadzhyan S.A., Budinovskiy S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostoykie pokrytiya i zharostoykie sloi dlya teplozashchitnyh pokrytiy [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings]
//Aviacionnye materialy i tekhnologii. 2013. №1.
S. 17–20.
21. Sposob obrabotki poverhnosti metallicheskogo izdeliya [Way of surface treatment of metal product]: pat. 2368701 Ros. Federaciya; opubl. 27.09.2009.
22. Kablov E.N., Muboyadzhyan S.A. Teplozashchitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat-protective coverings for turbine blades of high pressure of perspective GTD]
//Metally. 2012. №1. S. 5–13.
23. Sposob naneseniya kombinirovannogo zharostoykogo pokrytiya [Way of drawing the combined heat resisting covering]: pat. 2402633 Ros. Federaciya; opubl. 31.03.2009.
24. Budinovskiy S.A., Muboyadzhyan S.A., Gayamov A.M., Kos'min A.A. Zharostoykie ionno-plazmennye pokrytiya dlya lopatok turbin iz nikelevyh splavov, legirovannyh reniem [Heat resisting ion-plasma coverings for blades of turbines from the nickel alloys alloyed by reniye] //MiTOM. 2008. №6. S. 3136.
25. Budinovskiy S.A., Kablov E.N., Muboyadzhyan S.A. Primenenie analiticheskoy modeli opredeleniya uprugih napryazheniy v mnogosloynoy sisteme pri reshenii zadach po sozdaniyu vysokotemperaturnyh zharostoykih pokrytiy dlya rabochih lopatok aviacionnyh turbin [Application of analytical model of determination of elastic stresses in multi-layer system at the solution of tasks on creation of high-temperature heat resisting coverings for working blades of aviation turbines] //Vestnik MGTU im. N.Eh. Baumana. (Ser.: Mashinostroenie). 2011. №2. S. 26–37.
26. Budinovskiy S.A. Primenenie analiticheskoy modeli opredeleniya uprugih mekhanicheskih i termicheskih napryazheniy v mnogosloynoy sisteme v reshenii zadach po sozdaniyu zharostoykih alyuminidnyh pokrytiy [Application of analytical model of determination of elastic mechanical and thermal stresses in multi-layer system in the solution of tasks on creation of heat resisting alyuminidny coverings] //Uprochnyayushchie tekhnologii i pokrytiya. 2013. №3. S. 3–11.
2. Abraimov N.V. Vysokotemperaturnye materialy i pokrytiya dlya gazovyh turbin [High-temperature materials and coverings for gas turbines]. M.: Mashinostroenie. 1993. 336 s.
3. Spravochnik po aviacionnym materialam [Directory on aviation materials]. 5-e izd. T. 2. Cvetnye splavy /Pod red. A.T. Tumanova. M.: Oborongiz. 1958. 528 s.
4. Aviacionnye materialy [Aviation materials]: Spravochnik v devyati tomah. 6-e izd. pererab. i dop. T. 3. CH. 1. Deformiruemye zharoprochnye stali i splavy /Pod red. R.E. Shalina. M.: ONTI VIAM. 1989. 568 s.
5. Chichinadze A.V., Braun EH.D., Bushe N.A. i dr. Osnovy tribologii (trenie, iznos, smazka) [Tribologiya bases (friction, wear, lubricant)]. M.: Mashinostroenie. 2001. 664 s.
6. Samsonov G.V., Vinickiy I.M. Tugoplavkie soedineniya [High-melting connections]. M.: Metallurgiya. 1976. 560 s.
7. Ryahovskiy O.A., Klypin A.V. Detali mashin [Details of machines]. M.: Drofa. 2002. 288 s.
8. Andrienko L.A., Baykov B.A., Ganulich I.K. Detali mashin [Details of machines]: Ucheb. dlya vuzov. M.: Izd-vo MGTU im. N.EH. Baumana. 2002. 544 s.
9. Lyashchenko A.B., Mel'nichuk P.I., Francevich I.N. Metallurgiya vol'frama [Tungsten metallurgy]
//Poroshkovaya metallurgiya. 1961. №5. S. 10–14.
10. Rybakova L.M., Kuksenova L.I. Struktura i iznosostoykkost' metalla [Structure and wear resistance of metal]. M.: Mashinostroenie. 1982. 212 s.
11. Muboyadzhyan S.A. Osobennosti osazhdeniya potoka mnogokomponentnoy plazmy vakuumno-dugovogo razryada, soderzhashchego mikrokapli isparyaemogo materiala [Features of sedimentation of flow of multicomponent plasma of the vacuum arc discharge containing microdrops of evaporated material] //Metally. 2008. №2. S. 20–34.
12. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye liteynye zharoprochnye splavy novogo pokoleniya [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tekhnologii. 2012. №S. S. 36–52.
13. Bazyleva O.A., Arginbaeva Eh.G., Turenko E.Yu. Zharoprochnye liteynye intermetallidnye splavy [Heat resisting cast intermetallidny alloys] //Aviacionnye materialy i tekhnologii. 2012. №S. S. 57–60.
14. Kablov E.N., Muboyadzhyan S.A. Zharostoykie i teplozashchitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTD] //Aviacionnye materialy i tekhnologii. 2012. №S. S. 60–70.
15. Matveev P.V., Budinovskiy S.A., Muboyadzhyan S.A., Kos'min A.A. Zashchitnye zharostoykie pokrytiya dlya splavov na osnove intermetallidov nikelya [Protective heat resisting coverings for alloys on the basis of nickel intermetallic compound] //Aviacionnye materialy i tekhnologii. 2013. №2. S. 12–15.
16. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S. Nanosloynye uprochnyayushchie pokrytiya dlya zashchity stal'nyh i titanovyh lopatok kompressora GTD [Nanolayer strengthening coverings for protection of steel and titanic compressor blades of GTD] //Aviacionnye materialy i tekhnologii. 2011. №3. S. 3–8.
17. Budinovskiy S.A., Muboyadzhyan S.A., Gayamov A.M., Stepanova S.V. Ionno-plazmennye zharostoykie pokrytiya s kompozicionnym bar'ernym sloem dlya zashchity ot okisleniya splava ZHS36VI [Ion-plasma heat resisting coverings with composition barrier layer for protection against oxidation of alloy ЖС36ВИ]
//MiTOM. 2011. №1. S. 34–40.
18. Gayamov A.M. Zharostoykoe pokrytie s kompozicionnym bar'ernym sloem dlya zashchity vneshney poverhnosti rabochih lopatok GTD iz reniysoderzhashchih zharoprochnyh nikelevyh splavov [Heat resisting covering with composition barrier layer for protection of exterior surface of working blades of GTD from reniysoderzhashchy heat resisting nickel alloys] /V sb. materialov XI Rossiyskoy ezhegodnoy konf. molodyh nauchnyh sotrudnikov i aspirantov «Fiziko-himiya i tekhnologiya neorganicheskih materialov». M.: IMET RAN. 2012. C. 473–475.
19. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashchitnye i uprochnyayushchie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detaley kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTD compressor] //Aviacionnye materialy i tekhnologii. 2012. №S. S. 71–81.
20. Muboyadzhyan S.A., Budinovskiy S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostoykie pokrytiya i zharostoykie sloi dlya teplozashchitnyh pokrytiy [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings]
//Aviacionnye materialy i tekhnologii. 2013. №1.
S. 17–20.
21. Sposob obrabotki poverhnosti metallicheskogo izdeliya [Way of surface treatment of metal product]: pat. 2368701 Ros. Federaciya; opubl. 27.09.2009.
22. Kablov E.N., Muboyadzhyan S.A. Teplozashchitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat-protective coverings for turbine blades of high pressure of perspective GTD]
//Metally. 2012. №1. S. 5–13.
23. Sposob naneseniya kombinirovannogo zharostoykogo pokrytiya [Way of drawing the combined heat resisting covering]: pat. 2402633 Ros. Federaciya; opubl. 31.03.2009.
24. Budinovskiy S.A., Muboyadzhyan S.A., Gayamov A.M., Kos'min A.A. Zharostoykie ionno-plazmennye pokrytiya dlya lopatok turbin iz nikelevyh splavov, legirovannyh reniem [Heat resisting ion-plasma coverings for blades of turbines from the nickel alloys alloyed by reniye] //MiTOM. 2008. №6. S. 3136.
25. Budinovskiy S.A., Kablov E.N., Muboyadzhyan S.A. Primenenie analiticheskoy modeli opredeleniya uprugih napryazheniy v mnogosloynoy sisteme pri reshenii zadach po sozdaniyu vysokotemperaturnyh zharostoykih pokrytiy dlya rabochih lopatok aviacionnyh turbin [Application of analytical model of determination of elastic stresses in multi-layer system at the solution of tasks on creation of high-temperature heat resisting coverings for working blades of aviation turbines] //Vestnik MGTU im. N.Eh. Baumana. (Ser.: Mashinostroenie). 2011. №2. S. 26–37.
26. Budinovskiy S.A. Primenenie analiticheskoy modeli opredeleniya uprugih mekhanicheskih i termicheskih napryazheniy v mnogosloynoy sisteme v reshenii zadach po sozdaniyu zharostoykih alyuminidnyh pokrytiy [Application of analytical model of determination of elastic mechanical and thermal stresses in multi-layer system in the solution of tasks on creation of heat resisting alyuminidny coverings] //Uprochnyayushchie tekhnologii i pokrytiya. 2013. №3. S. 3–11.
28.
№3, 2015
УДК 621.74.045
L.I. Rassohina1, P.I. Parfenovich1
THE ISSUES OF DEVELOPING MODEL COMPOSITIONS
OF NEW GENERATION ON THE BASIS OF DOMESTIC MATERIALS
FOR THE MANUFACTURE OF GAS TURBINE ENGINE BLADES
Model compositions are widely used in manufacture of GTE details by investment casting. The analysis of contemporary issues, related to quality of models was reviewed and main branches of development of domestic model compositions of new generation, which aren’t inferior to foreign counterparts in properties, were determined.
Keywords: investment casting, model compositions, wax, polymeric resin, terephtalic acid.
Reference List
. Klassifikacija vyplavljaemyh model'nyh sostavov dlja tochnogo lit'ja [Classification of melted model structures for precision casting] /Pod red. S.I. Jacyka. Proizvodstvo vysokotemperaturnyh lityh lopatok aviacionnyh GTD. M.: Mashinostroenie. 1995. 256 s.
2. Ospennikova O.G. Model'nye kompozicii na osnove sinteticheskih materialov dlja lit'ja po vyplavljaemym modeljam detalej GTD [Model compositions on the basis of synthetic materials for investment casting of details of GTD]. Avtoreferat diss. k.t.n. M.: MMPP «Saljut». 2000. 32 s.
3. Ospennikova O.G., Kablov E.N., Shunkin V.N. Model'nye kompozicii na osnove sinteticheskih materialov dlja lit'ja lopatok GTD [Model compositions on the basis of synthetic materials for molding of blades of GTD] /V sb. Aviacionnye materialy i tehnologii. M.: VIAM. 2002. №3. S. 64–67.
4. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
6. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. №4. S. 2–7.
7. Ospennikova O.G., Shutov A.N., Pikulina L.V., Dushkin A.M. Model'nye kompozicii na osnove sinteticheskih materialov dlja lit'ja lopatok GTD [Model compositions on the basis of synthetic materials for molding of blades of GTD] // Litejnoe proizvodstvo. 2003. № 1.
S. 21–23.
8. Ospennikova O.G. Issledovanie vlijanija napolnitelej na svojstva i stabil'nost' model'nyh kompozicij, vybor optimal'nyh sostavov [Research of influence of fillers on properties and stability of model compositions, choice of optimum structures] //Aviacionnye materialy i tehnologii. 2014. № 3. S. 14–17.
9. Ospennikova O.G. Issledovanie i razrabotka parametrov tehnologicheskogo processa izgotovlenija modelej iz model'nyh kompozicij na osnove sinteticheskih voskov [Research and development of parameters of technological process of manufacturing of models from model compositions on the basis of synthetic voskov] //Aviacionnye materialy i tehnologii. 2014. № 3. S. 18–21.
10. Ospennikova O.G., Kablov E.N., Shunkin V.N. Razrabotka i issledovanie plastifikatora dlja model'nyh kompozicij na osnove prirodnyh voskov [Development and plasticizer research for model compositions on the basis of natural voskov] /V sb.: Aviacionnye materialy i tehnologii. M.: VIAM. 2002. №3. S. 68–70.
2. Ospennikova O.G. Model'nye kompozicii na osnove sinteticheskih materialov dlja lit'ja po vyplavljaemym modeljam detalej GTD [Model compositions on the basis of synthetic materials for investment casting of details of GTD]. Avtoreferat diss. k.t.n. M.: MMPP «Saljut». 2000. 32 s.
3. Ospennikova O.G., Kablov E.N., Shunkin V.N. Model'nye kompozicii na osnove sinteticheskih materialov dlja lit'ja lopatok GTD [Model compositions on the basis of synthetic materials for molding of blades of GTD] /V sb. Aviacionnye materialy i tehnologii. M.: VIAM. 2002. №3. S. 64–67.
4. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
6. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. №4. S. 2–7.
7. Ospennikova O.G., Shutov A.N., Pikulina L.V., Dushkin A.M. Model'nye kompozicii na osnove sinteticheskih materialov dlja lit'ja lopatok GTD [Model compositions on the basis of synthetic materials for molding of blades of GTD] // Litejnoe proizvodstvo. 2003. № 1.
S. 21–23.
8. Ospennikova O.G. Issledovanie vlijanija napolnitelej na svojstva i stabil'nost' model'nyh kompozicij, vybor optimal'nyh sostavov [Research of influence of fillers on properties and stability of model compositions, choice of optimum structures] //Aviacionnye materialy i tehnologii. 2014. № 3. S. 14–17.
9. Ospennikova O.G. Issledovanie i razrabotka parametrov tehnologicheskogo processa izgotovlenija modelej iz model'nyh kompozicij na osnove sinteticheskih voskov [Research and development of parameters of technological process of manufacturing of models from model compositions on the basis of synthetic voskov] //Aviacionnye materialy i tehnologii. 2014. № 3. S. 18–21.
10. Ospennikova O.G., Kablov E.N., Shunkin V.N. Razrabotka i issledovanie plastifikatora dlja model'nyh kompozicij na osnove prirodnyh voskov [Development and plasticizer research for model compositions on the basis of natural voskov] /V sb.: Aviacionnye materialy i tehnologii. M.: VIAM. 2002. №3. S. 68–70.
29.
№2, 2015
УДК 621.763
I.R. Aslanyan1, L.Sh. Shuster1
EVALUATION OF COATINGS WEAR IN VARIOUS CONDITIONS OF FRICTION
The application of electrolytic nickel-phosphorous coatings was consider. On the example of NiP coatings developed criteria that allowed a comparison of wear coatings under different conditions of friction: sliding, fretting and corrosion. The substantiation that the reverse friction pair comparison of wear coatings in different conditions of friction (continuous sliding, fretting and corrosion) should be carried out on the value of k, is proportional to the linear wear rate.
Keywords: coating, friction, wear, slip, fretting wear, fretting corrosion.
Reference List
1. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Pomelov Ya.A. Ionno-plazmennye zashchit-nye pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines]
//Konversiya v mashinostroenii. 1999. №2. S. 42–47.
2. Litye lopatki gazoturbinnyh dvigatelej. Splavy, tekhnologii, pokrytiya [Cast blades of gas turbine engines. Alloys, technologies, coverings]. 2-e izd. /Pod obshch. red. E.N. Kablova. M.: Nauka. 2006. 632 s.
3. Kablov E.N., Muboyadzhyan S.A. Heat-resistant coatings for the high-pressure turbine blades of promising GTES //Russian metallurgy (Metally). 2012. V. 2012. №1. P. 1–7.
4. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S. Nanoslojnye uprochnyayushchie pokrytiya dlya zashchity stalnyh i titanovyh lopatok kompressora GTD [Nanolayer strengthening coverings for protection of steel and titanic compressor blades of GTD]
//Aviacionnye materialy i tekhnologii. 2011. №3. S. 3–8.
5. Kablov E.N. Korroziya ili zhizn' [Corrosion or life]
//Nauka i zhizn'. 2012. №11. S. 16–21.
6. Muboyadzhyan S.A., Galoyan A.G. Kompleksnye termodiffuzionnye zharostojkie pokrytiya dlya bezuglerodistyh zharoprochnyh splavov na nikelevoj osnove [Complex thermodiffusion heat resisting coatings for carbon-free hot strength alloys on nickel basis]
//Aviacionnye materialy i tekhnologii. 2012. №3.
S. 25–30.
7. Kablov E.N., Muboyadzhyan S.A. Teplozashchitnye pokrytiya dlya lopatok turbiny vysokogo dav-leniya perspektivnyh GTD [Heat-protective coverings for turbine blades of high pressure of perspective GTD] //Metally. 2012. №1. C. 5–13.
8. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashchitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heatprotective coverings for turbine blades of high pressure of perspective GTD] //Aviacionnye materialy i tekhnologii. 2012. №5.
9. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] //Aviacionnye materialy i tekhnologii. 2012. №5. S. 7–17.
10. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashchitnye i uprochnyayushchie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kom-pressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTD compressor] //Aviacionnye materialy i tekhnologii. 2012. №5.
S. 71–81.
11. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Lucenko A.N. Ionno-plazmennye zashchit-nye pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines]//Metally. 2007. №5. S. 23–34.
12. Semenychev V.V., Salahova R.K., Tyurikov E.V., Ilin V.A. Zashchitnye i funkcionalnye galvanicheskie pokrytiya, poluchaemye s primeneniem nanorazmernyh chastic [The protective and functional galvanic coverings received using nanodimensional particles] //Aviacionnye materialy i tekhnologii. 2012. №S. S. 335–342.
13. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya kon-strukcionnyh materialov i tekhnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashchego i budushchego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] //Avtomaticheskaya svarka. 2013. №10. S. 23–32.
14. Kablov E.N., Muboyadzhyan S.A., Lucenko A.N. Nanostrukturnye ionno-plazmennye zashchitnye i uprochnyayushchie pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Nanostructural ion-plasma protective and strengthening coverings for blades of gas turbine engines] //Voprosy materialovedeniya. 2008. №2 (54).
S. 175–187.
15. J.F. Colaruotolo, D. Tramontana. Engineering Applications of Electroless Nickel. 1990. 227 p.
16. Aslanyan I.R., Selis Zh.P., Shuster L.Sh. Vliyanie dobavok karbidov kremniya SiC na iznashivanie ehlektroliticheskih NiP pokrytij [Influence of additives of SiC silicon carbides on wear process of electrolytic NiP of coverings] //Trenie i iznos. 2010. №5. T. 31. S. 353–361.
17. Aslanyan I.R., Selis Zh.P., Shuster L.Sh. Vliyanie dobavok karbidov kremniya SiC na fretting-iznashivanie ehlektroliticheskih NiP pokrytij [Influence of additives of SiC silicon carbides on fretting wear process of electrolytic NiP of coverings] //Trenie i iznos. 2011. №2. T. 32. S. 30–35.
18. Aslanyan I.R., Selis Zh.P., Shuster L.Sh. Fretting-korroziya ehlektroliticheskih NiP pokrytij [Fretting corrosion of electrolytic NiP of coverings] // Trenie i iznos. 2011. №6. T. 32. S. 556–561.
//Konversiya v mashinostroenii. 1999. №2. S. 42–47.
2. Litye lopatki gazoturbinnyh dvigatelej. Splavy, tekhnologii, pokrytiya [Cast blades of gas turbine engines. Alloys, technologies, coverings]. 2-e izd. /Pod obshch. red. E.N. Kablova. M.: Nauka. 2006. 632 s.
3. Kablov E.N., Muboyadzhyan S.A. Heat-resistant coatings for the high-pressure turbine blades of promising GTES //Russian metallurgy (Metally). 2012. V. 2012. №1. P. 1–7.
4. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S. Nanoslojnye uprochnyayushchie pokrytiya dlya zashchity stalnyh i titanovyh lopatok kompressora GTD [Nanolayer strengthening coverings for protection of steel and titanic compressor blades of GTD]
//Aviacionnye materialy i tekhnologii. 2011. №3. S. 3–8.
5. Kablov E.N. Korroziya ili zhizn' [Corrosion or life]
//Nauka i zhizn'. 2012. №11. S. 16–21.
6. Muboyadzhyan S.A., Galoyan A.G. Kompleksnye termodiffuzionnye zharostojkie pokrytiya dlya bezuglerodistyh zharoprochnyh splavov na nikelevoj osnove [Complex thermodiffusion heat resisting coatings for carbon-free hot strength alloys on nickel basis]
//Aviacionnye materialy i tekhnologii. 2012. №3.
S. 25–30.
7. Kablov E.N., Muboyadzhyan S.A. Teplozashchitnye pokrytiya dlya lopatok turbiny vysokogo dav-leniya perspektivnyh GTD [Heat-protective coverings for turbine blades of high pressure of perspective GTD] //Metally. 2012. №1. C. 5–13.
8. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashchitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heatprotective coverings for turbine blades of high pressure of perspective GTD] //Aviacionnye materialy i tekhnologii. 2012. №5.
9. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] //Aviacionnye materialy i tekhnologii. 2012. №5. S. 7–17.
10. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashchitnye i uprochnyayushchie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kom-pressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTD compressor] //Aviacionnye materialy i tekhnologii. 2012. №5.
S. 71–81.
11. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Lucenko A.N. Ionno-plazmennye zashchit-nye pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines]//Metally. 2007. №5. S. 23–34.
12. Semenychev V.V., Salahova R.K., Tyurikov E.V., Ilin V.A. Zashchitnye i funkcionalnye galvanicheskie pokrytiya, poluchaemye s primeneniem nanorazmernyh chastic [The protective and functional galvanic coverings received using nanodimensional particles] //Aviacionnye materialy i tekhnologii. 2012. №S. S. 335–342.
13. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya kon-strukcionnyh materialov i tekhnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashchego i budushchego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] //Avtomaticheskaya svarka. 2013. №10. S. 23–32.
14. Kablov E.N., Muboyadzhyan S.A., Lucenko A.N. Nanostrukturnye ionno-plazmennye zashchitnye i uprochnyayushchie pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Nanostructural ion-plasma protective and strengthening coverings for blades of gas turbine engines] //Voprosy materialovedeniya. 2008. №2 (54).
S. 175–187.
15. J.F. Colaruotolo, D. Tramontana. Engineering Applications of Electroless Nickel. 1990. 227 p.
16. Aslanyan I.R., Selis Zh.P., Shuster L.Sh. Vliyanie dobavok karbidov kremniya SiC na iznashivanie ehlektroliticheskih NiP pokrytij [Influence of additives of SiC silicon carbides on wear process of electrolytic NiP of coverings] //Trenie i iznos. 2010. №5. T. 31. S. 353–361.
17. Aslanyan I.R., Selis Zh.P., Shuster L.Sh. Vliyanie dobavok karbidov kremniya SiC na fretting-iznashivanie ehlektroliticheskih NiP pokrytij [Influence of additives of SiC silicon carbides on fretting wear process of electrolytic NiP of coverings] //Trenie i iznos. 2011. №2. T. 32. S. 30–35.
18. Aslanyan I.R., Selis Zh.P., Shuster L.Sh. Fretting-korroziya ehlektroliticheskih NiP pokrytij [Fretting corrosion of electrolytic NiP of coverings] // Trenie i iznos. 2011. №6. T. 32. S. 556–561.