Articles
Heat-resistant materials
1.
№2, 2017
УДК 666.7
Ivakhnenko Yu.A.1, Varrik N.M.1
Fibrous gradient ceramic material
The development of modern engineering and industrial technologies aims to develop new materials that can meet ever more severe conditions. One of these conditions is the ability to work at high temperatures, so one of the important materials is the high temperature insulation. Requirements for the insulation materials include first high thermal properties, namely high temperature resistance and low coefficient of thermal conductivity; and the minimum specific weight, chemical resistance, mechanical strength, elasticity and other performance properties relevant to their technological and environmental safety. In this work we try to create a high-temperature thermal insulation material for insulation of metal energy device cases, operating at temperatures above 1500°С. The use of structural ceramic materials in conjunction with metal parts requires the use of a material that has the ability to absorb strain caused by the difference between the coefficients of thermal expansion constructi
Keywords: oxide fiber, gradient material, heat insulation.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Grashchenkov D.V., Shchetanov B.V., Tinyakova E.V., Shcheglova T.M. O vozmozhnosti ispolzovaniya kvartsevogo volokna v kachestve svyazuyushchego pri poluchenii legkovesnogo teplozashchitnogo materiala na osnove volokon Al2O3 [About possibility of use of quartz fiber as lightweight heat-protective material binding at receiving on the basis of Al2O3 fibers] // Aviacionnye materialy i tehnologii. 2011. №4. S. 8‒14.
4. Ivahnenko Yu.A., Babashov V.G., Zimichev A.M., Tinyakova E.V. Vysokotemperaturnye teploizolyacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] // Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
5. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: March 21, 2017).
6. Kablov E.N. Razrabotki VIAM dlya gazoturbinnykh dvigateley i ustanovok [Development of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 31–33.
7. Hybrid ceramic material composed of insulating and structural ceramic layers: pat. 6733907 USA; field 26.09.01; publ. 11.05.04.
8. Flexible ceramic-metal insulation composite and method of making: pat. 5744252 USA; field 11.06.93; publ. 28.04.98.
9. Thermal gradient resistant ceramic composite: pat. 6251815 USA; field 18.01.00; publ. 26.06.01.
10. Sposob polucheniia voloknistogo keramicheskogo materiala [Way of receiving fibrous ceramic material]: pat. 2466966 Ros. Federatsiia; zaiavl. 11.05.11; opubl. 20.11.12, Biul. №32. 8 s.
11. Aviatsionnye materialy: spravochnik v 13 t. [Aviation materials: the directory in 13 vol.] M.: VIAM. 2011. T. 9: Teplozashchitnye, teploizoliatsionnye i kompozitsionnye materialy, vysokotemperaturnye nemetallicheskie pokrytiia. S. 31–37.
12. Babashov V.G., Varrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizolyacionnyj material [High-temperature flexible fibrous insulation material] // Trudy VIAM :elektron. nauch.-tehnich. zhurn. 2015. №1. St. 03. Available at: http://viam-works.ru (accessed: March 21, 2017).
13. Ivakhnenko Iu.A., Kuzmin V.V., Bespalov A.S. Sostoianie i perspektivy razvitiia teplo-zvukoizoliatsionnykh pozharobezopasnykh materialov [Condition and perspectives of development of heatsound-proof fireproof materials] // Problemy bezopasnosti poletov, №7. 2014. S. 27–30.
14. Zimichev A.M., Varrik N.M. K voprosu primeneniya diskretnyh volokon iz tugoplavkih oksidov dlya formirovaniya serdechnika termostojkih uplotnitelnyh shnurov [On the issue of application of discrete fibers of refractory oxides to form cores of heat-resistant sealing cords] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 07. Available at: http://www.viam-works.ru (accessed: March 21, 2017). DOI: 10.18577/2307-6046-2015-0-2-7-7.
15. Maksimov V.G., Varrik N.M. Vysokotemperaturnaia keramicheskaia teploizoliatsiia (obzor) [High-temperature ceramic heat insulation (review)] // Novosti materialovedeniia. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2015. №6. St. 09. Available at: http://www.materialsnews.ru (accessed: March 21, 2017).
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Grashchenkov D.V., Shchetanov B.V., Tinyakova E.V., Shcheglova T.M. O vozmozhnosti ispolzovaniya kvartsevogo volokna v kachestve svyazuyushchego pri poluchenii legkovesnogo teplozashchitnogo materiala na osnove volokon Al2O3 [About possibility of use of quartz fiber as lightweight heat-protective material binding at receiving on the basis of Al2O3 fibers] // Aviacionnye materialy i tehnologii. 2011. №4. S. 8‒14.
4. Ivahnenko Yu.A., Babashov V.G., Zimichev A.M., Tinyakova E.V. Vysokotemperaturnye teploizolyacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] // Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
5. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: March 21, 2017).
6. Kablov E.N. Razrabotki VIAM dlya gazoturbinnykh dvigateley i ustanovok [Development of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 31–33.
7. Hybrid ceramic material composed of insulating and structural ceramic layers: pat. 6733907 USA; field 26.09.01; publ. 11.05.04.
8. Flexible ceramic-metal insulation composite and method of making: pat. 5744252 USA; field 11.06.93; publ. 28.04.98.
9. Thermal gradient resistant ceramic composite: pat. 6251815 USA; field 18.01.00; publ. 26.06.01.
10. Sposob polucheniia voloknistogo keramicheskogo materiala [Way of receiving fibrous ceramic material]: pat. 2466966 Ros. Federatsiia; zaiavl. 11.05.11; opubl. 20.11.12, Biul. №32. 8 s.
11. Aviatsionnye materialy: spravochnik v 13 t. [Aviation materials: the directory in 13 vol.] M.: VIAM. 2011. T. 9: Teplozashchitnye, teploizoliatsionnye i kompozitsionnye materialy, vysokotemperaturnye nemetallicheskie pokrytiia. S. 31–37.
12. Babashov V.G., Varrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizolyacionnyj material [High-temperature flexible fibrous insulation material] // Trudy VIAM :elektron. nauch.-tehnich. zhurn. 2015. №1. St. 03. Available at: http://viam-works.ru (accessed: March 21, 2017).
13. Ivakhnenko Iu.A., Kuzmin V.V., Bespalov A.S. Sostoianie i perspektivy razvitiia teplo-zvukoizoliatsionnykh pozharobezopasnykh materialov [Condition and perspectives of development of heatsound-proof fireproof materials] // Problemy bezopasnosti poletov, №7. 2014. S. 27–30.
14. Zimichev A.M., Varrik N.M. K voprosu primeneniya diskretnyh volokon iz tugoplavkih oksidov dlya formirovaniya serdechnika termostojkih uplotnitelnyh shnurov [On the issue of application of discrete fibers of refractory oxides to form cores of heat-resistant sealing cords] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 07. Available at: http://www.viam-works.ru (accessed: March 21, 2017). DOI: 10.18577/2307-6046-2015-0-2-7-7.
15. Maksimov V.G., Varrik N.M. Vysokotemperaturnaia keramicheskaia teploizoliatsiia (obzor) [High-temperature ceramic heat insulation (review)] // Novosti materialovedeniia. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2015. №6. St. 09. Available at: http://www.materialsnews.ru (accessed: March 21, 2017).
2.
№1, 2017
УДК 666.7
Maksimov V.G.1, Varrik N.M.1
To question of receiving chemically resistant quartz ceramics with open porosity
Ceramic materials are used in many areas of modern industry. In recent decades ceramic materials in many applications replaced metals and alloys. Porous ceramics finds application as heat insulation, is used as ceramic filters for the filtration of hot gases, liquids and molten metal, and also as a substrate of catalysts. The porosity of ceramics depends on its function and is achieved by various methods of its fabrication. In this paper, the possibility of making sensors for PH meters of porous ceramics are studied. Methods for fabrication of the samples and their properties are described.
Keywords: porous ceramic, quartz, heat resistance, chemical durability.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Buchilin N.V., Maksimov V.G., Babashov V.G. Keramicheskie fil'try dlya rasplava alyuminiya (obzor) [Ceramic filters for rasplava aluminum (review)] // Steklo i keramika. 2015. №7. S. 20–28.
4. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: November 14, 2016).
5. Sposob izgotovleniya keramicheskogo kompozitsionnogo materiala [Way of manufacturing of ceramic composite material]: pat. 2355665 Ros. Fede-ratsiya; zayavl. 25.07.07; opubl. 20.05.08. Byul. №14. 8 s.
6. Sposob izgotovleniya vysokoporistykh yacheistykh keramicheskikh izdeliy [Way of manufacturing of high-porous cellular pottery]: pat. 2377224 Ros. Federatsiya; zayavl. 14.04.08; opubl. 27.12.09. Byul. №9. 6 s.
7. Buchilin N.V., Prager E.P., Ivakhnenko Yu.A. Vliyanie plastifitsiruyushchikh dobavok na reo-logicheskie kharakteristiki shlikerov dlya polucheniya poristykh keramicheskikh materialov na os-nove oksida alyuminiya [The influence of plasticizating additives on rheology of slip for porous ceramic materials based on aluminum oxide] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №8. St. 06. Available at: http://www.viam-works.ru (accessed: November 14, 2016). DOI: 10.18577/2307-6046-2016-0-8-0-6-6.
8. Maksimov V.G., Basargin O.V., Shheglova T.M., Nikitina V.Yu. O proyavlenii sverhplastichnosti v polidispersnoj keramike mullit–oksid cirkoniya s razmerom kristallov bolee 10 mkm [About superplasticity manifestation in unequigranular ceramics mullit-zirconium oxide with size of crystals more than 10 microns] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №6. St. 04. Available at: http://www.viam-works.ru (accessed: November 14, 2016).
9. Kirienko T.A., Balinova Yu.A. Fiziko-himicheskie svojstva mnogokomponentnyh rastvorov dlya keramicheskih materialov, soderzhashhih polivinilovyj spirt [Physical and chemical properties of multicomponent solutions for ceramic materials containing polyvinyl alcohol] // Aviacionnye materialy i tehnologii. 2014. №1. S. 34–38. DOI: 10.18577/2071-9140-2014-0-1-34-38.
10. Kirienko T.A., Balinova Yu.A. Vliyanie atmosfernoj vlazhnosti na reologiju tonkih sloev koncentrirovannyh vodnyh rastvorov sistemy «neorganicheskie soli–organicheskij polimer» [Influence of atmospheric humidity on a rheology of thin layers of the concentrated water solutions of system «inorganic salts–organic polymer»] // Aviacionnye materialy i tehnologii. 2014. №2. S. 56–58. DOI: 10.18577/2071-9140-2014-0-2-56-58.
11. Zimichev A.M., Varrik N.M. K voprosu primeneniya diskretnyh volokon iz tugoplavkih oksidov dlya formirovaniya serdechnika termostojkih uplotnitelnyh shnurov [On the issue of application of discrete fibers of refractory oxides to form cores of heat-resistant sealing cords] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 07. Available at: http://www.viam-works.ru (accessed: November 14, 2016). DOI: 10.18577/2307-6046-2015-0-2-7-7.
12. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
13. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
14. Grashchenkov D.V., Balinova Yu.A., Tinyakova E.V. Keramicheskie volokna oksida alyuminiya i materialy na ikh osnove [Ceramic fibers of aluminum oxide and materials on their basis] // Steklo i keramika. 2012. №4. S. 32–36.
15. Ivahnenko Yu.A., Babashov V.G., Zimichev A.M., Tinyakova E.V. Vysokotemperaturnye teploizolyacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] // Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
2. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Buchilin N.V., Maksimov V.G., Babashov V.G. Keramicheskie fil'try dlya rasplava alyuminiya (obzor) [Ceramic filters for rasplava aluminum (review)] // Steklo i keramika. 2015. №7. S. 20–28.
4. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: November 14, 2016).
5. Sposob izgotovleniya keramicheskogo kompozitsionnogo materiala [Way of manufacturing of ceramic composite material]: pat. 2355665 Ros. Fede-ratsiya; zayavl. 25.07.07; opubl. 20.05.08. Byul. №14. 8 s.
6. Sposob izgotovleniya vysokoporistykh yacheistykh keramicheskikh izdeliy [Way of manufacturing of high-porous cellular pottery]: pat. 2377224 Ros. Federatsiya; zayavl. 14.04.08; opubl. 27.12.09. Byul. №9. 6 s.
7. Buchilin N.V., Prager E.P., Ivakhnenko Yu.A. Vliyanie plastifitsiruyushchikh dobavok na reo-logicheskie kharakteristiki shlikerov dlya polucheniya poristykh keramicheskikh materialov na os-nove oksida alyuminiya [The influence of plasticizating additives on rheology of slip for porous ceramic materials based on aluminum oxide] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №8. St. 06. Available at: http://www.viam-works.ru (accessed: November 14, 2016). DOI: 10.18577/2307-6046-2016-0-8-0-6-6.
8. Maksimov V.G., Basargin O.V., Shheglova T.M., Nikitina V.Yu. O proyavlenii sverhplastichnosti v polidispersnoj keramike mullit–oksid cirkoniya s razmerom kristallov bolee 10 mkm [About superplasticity manifestation in unequigranular ceramics mullit-zirconium oxide with size of crystals more than 10 microns] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №6. St. 04. Available at: http://www.viam-works.ru (accessed: November 14, 2016).
9. Kirienko T.A., Balinova Yu.A. Fiziko-himicheskie svojstva mnogokomponentnyh rastvorov dlya keramicheskih materialov, soderzhashhih polivinilovyj spirt [Physical and chemical properties of multicomponent solutions for ceramic materials containing polyvinyl alcohol] // Aviacionnye materialy i tehnologii. 2014. №1. S. 34–38. DOI: 10.18577/2071-9140-2014-0-1-34-38.
10. Kirienko T.A., Balinova Yu.A. Vliyanie atmosfernoj vlazhnosti na reologiju tonkih sloev koncentrirovannyh vodnyh rastvorov sistemy «neorganicheskie soli–organicheskij polimer» [Influence of atmospheric humidity on a rheology of thin layers of the concentrated water solutions of system «inorganic salts–organic polymer»] // Aviacionnye materialy i tehnologii. 2014. №2. S. 56–58. DOI: 10.18577/2071-9140-2014-0-2-56-58.
11. Zimichev A.M., Varrik N.M. K voprosu primeneniya diskretnyh volokon iz tugoplavkih oksidov dlya formirovaniya serdechnika termostojkih uplotnitelnyh shnurov [On the issue of application of discrete fibers of refractory oxides to form cores of heat-resistant sealing cords] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 07. Available at: http://www.viam-works.ru (accessed: November 14, 2016). DOI: 10.18577/2307-6046-2015-0-2-7-7.
12. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
13. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
14. Grashchenkov D.V., Balinova Yu.A., Tinyakova E.V. Keramicheskie volokna oksida alyuminiya i materialy na ikh osnove [Ceramic fibers of aluminum oxide and materials on their basis] // Steklo i keramika. 2012. №4. S. 32–36.
15. Ivahnenko Yu.A., Babashov V.G., Zimichev A.M., Tinyakova E.V. Vysokotemperaturnye teploizolyacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] // Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
3.
№3, 2016
УДК 621.186.4
Varrik N.M.1
Thermal insulation materials for modern planes
Data on flexible heat-insulating materials for aircraft, their main characteristics and methods of their receiving are provided in the article. Development of sound thermal insulation materials for planes with the lowered specific weight, high operational properties and meeting the requirements of fire safety is one of actual tasks for developers of materials now. Ensuring reliable work of thermal insulation in the conditions of cyclic thermal loadings and vibrations and an opportunity to resist to extreme heatings in ignition cases – an important task during creation of materials for perspective planes. This article presents the review of the types of thermal insulation and methods of increase of its operational properties existing now at the market.
Keywords: thermal insulation, fire barrier, fire blocking, acoustical insulation mat, heat-resistant fiber.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Grashhenkov D.V., Shhetanov B.V., Tinjakova E.V., Shheglova T.M. O vozmozhnosti ispol'zovanija kvarcevogo volokna v kachestve svjazujushhego pri poluchenii legkovesnogo teplozashhitnogo materiala na osnove volokon Al2O3 [About possibility of use of quartz fiber as a superficial heat-shielding material binding at receiving on the basis of Al2O3 fibers] // Aviacionnye materialy i tehnologii. 2011. №4. S. 8‒14.
4. Ivahnenko Yu.A., Babashov V.G., Zimichev A.M., Tinyakova E.V. Vysokotemperaturnye teploizolyacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] // Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
5. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: March 21, 2016).
6. Kablov E.N. Razrabotki VIAM dlja gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas-turbine engines and installations] // Krylja Rodiny. 2010. №4. S. 31–33.
7. Normy letnoj godnosti samoletov transportnoj kategorii [Standards of the flight validity of planes of transport category]: AP-25. 3-e izd.: utv. Postanovleniem 28-j sessii Soveta po aviacii i ispol'zovaniju vozdushnogo prostranstva 11.12.2008. M.: Aviaizdat, 2009. Prilozhenie F. Ch. 4.
S. 246–253.
8. Alumina: pat. 1425934 UK; publ. 21.12.72. 11 p.
9. Process for producing alumina fiber: pat. 3950478 US; publ. 13.04.76. 6 p.
10. Fiber masses: pat. 4011651 US; publ. 15.03.77. 5 p.
11. Kompanija Unifrax [Company Unifrax]. Available at: http:// www.unifrax.com (accessed: June 01, 2016).
12. Process for producing laminated sheet comprising alumina fiber precursor: pat. 6602369 US; publ. 05.08.03. 6 p.
13. Process for producing continuous alumina fiber blanket: pat. 7033537 US; publ. 25.04.06. 9 p.
14. Alumina fiber structure and process for its production: pat. 4931239 US; publ. 14.04.92. 8 p.
15. Flexible nonwoven mat: pat. 5380580 US; publ. 10.01.95. 11 p.
16. Method of making fiber-based products and their use: pat. 6733628 US; publ. 11.05.04. 3 p.
17. Burn through resistant systems for transportation, especially aircraft: pat. 6565040 US; publ. 20.05.03. 6 p.
18. Composite laminate for a thermal and acoustic insulation blanket: pat. 8292027 US; publ. 23.10.12. 6 p.
19. Fire barrier film laminate: pat. 7767597 US; publ. 03.08.10. 14 p.
20. Modularized insulation systems, apparatus and methods: pat. 7083147 US; publ. 01.08.06. 23 p.
21. Laminate sheet material for fare barrier applications: pat. 6670291 US; publ. 30.12.03. 28 p.
22. Flexible composite multiple layer fire resistant insulation structure: pat. 8062985 US; publ. 22.11.11. 20 p.
23. Ognestojkij sloistyj zvukoteploizolirujushhij material [Fire-resistant layered sound heatisolating material]: pat. 2465145 Ros. Federacija; opubl. 27.10.12. Bjul. №30. 7 s.
24. Balinova Ju.A., Kirienko T.A. Nepreryvnye vysokotemperaturnye oksidnye volokna dlja teplozashhitnyh, teploizoljacionnyh i kompozicionnyh materialov [Continuous high-temperature oksidny fibers for heat-shielding, heatinsulating and composite materials]// Vse materialy. Jen-ciklopedicheskij spravochnik. 2012. №4. S. 24–29.
25. Sposob poluchenija vysokotemperaturnogo volokna na osnove oksida aljuminija [Way of receiving high-temperature fiber on the basis of aluminum oxide]: pat. 2212388 Ros. Federacija; opubl. 20.09.03. Bjul. №34. 6 s.
26. Aviacionnye materialy: spravochnik v 12 t [Aviation materials: the directory in 12 vol.]. M.: VIAM, 2011. T. 9. Teplozashhit-nye, teploizoljacionnye i kompozicionnye materialy, vysokotemperaturnye nemetalli-cheskie pokrytija. S. 31.
27. Babashov V.G., Varrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizolyacionnyj material [High-temperature flexible fibrous insulation material] // Trudy VIAM :electron. nauch.-tehnich. zhurn. 2015. №1. St. 03. Available at: http://viam-works.ru (accessed: March 21, 2016).
28. Ivahnenko Ju.A., Kuzmin V.V., Bespalov A.S. Sostojanie i perspektivy razvitija teplo-zvukoizoljacionnyh pozharobezopasnyh materialov [Condition and prospects of development of heatsound-proof fireproof materials] // Problemy bezopasnosti poletov. 2014. №7. S. 27–30.
29. Zimichev A.M., Varrik N.M. K voprosu primeneniya diskretnyh volokon iz tugoplavkih oksidov dlya formirovaniya serdechnika termostojkih uplotnitelnyh shnurov [On the issue of application of discrete fibers of refractory oxides to form cores of heat-resistant sealing cords] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 07. Available at: http://www.viam-works.ru (accessed: March 21, 2016).
30. Sposob poluchenija voloknistogo teploizoljacionnogo materiala [Way of receiving a fibrous heatinsulating material]: pat. 2553870 Ros. Federacija; opubl. 20.06.15. Bjul. №17. 8 s.
31. Multi-layer fire protection material: pat. 2011126957 US; publ. 02.06.11. 8 p.
32. Fire and heat resistant materials: pat. 2279084 UK; publ. 21.12.94. 42 p.
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Grashhenkov D.V., Shhetanov B.V., Tinjakova E.V., Shheglova T.M. O vozmozhnosti ispol'zovanija kvarcevogo volokna v kachestve svjazujushhego pri poluchenii legkovesnogo teplozashhitnogo materiala na osnove volokon Al2O3 [About possibility of use of quartz fiber as a superficial heat-shielding material binding at receiving on the basis of Al2O3 fibers] // Aviacionnye materialy i tehnologii. 2011. №4. S. 8‒14.
4. Ivahnenko Yu.A., Babashov V.G., Zimichev A.M., Tinyakova E.V. Vysokotemperaturnye teploizolyacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] // Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
5. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: March 21, 2016).
6. Kablov E.N. Razrabotki VIAM dlja gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas-turbine engines and installations] // Krylja Rodiny. 2010. №4. S. 31–33.
7. Normy letnoj godnosti samoletov transportnoj kategorii [Standards of the flight validity of planes of transport category]: AP-25. 3-e izd.: utv. Postanovleniem 28-j sessii Soveta po aviacii i ispol'zovaniju vozdushnogo prostranstva 11.12.2008. M.: Aviaizdat, 2009. Prilozhenie F. Ch. 4.
S. 246–253.
8. Alumina: pat. 1425934 UK; publ. 21.12.72. 11 p.
9. Process for producing alumina fiber: pat. 3950478 US; publ. 13.04.76. 6 p.
10. Fiber masses: pat. 4011651 US; publ. 15.03.77. 5 p.
11. Kompanija Unifrax [Company Unifrax]. Available at: http:// www.unifrax.com (accessed: June 01, 2016).
12. Process for producing laminated sheet comprising alumina fiber precursor: pat. 6602369 US; publ. 05.08.03. 6 p.
13. Process for producing continuous alumina fiber blanket: pat. 7033537 US; publ. 25.04.06. 9 p.
14. Alumina fiber structure and process for its production: pat. 4931239 US; publ. 14.04.92. 8 p.
15. Flexible nonwoven mat: pat. 5380580 US; publ. 10.01.95. 11 p.
16. Method of making fiber-based products and their use: pat. 6733628 US; publ. 11.05.04. 3 p.
17. Burn through resistant systems for transportation, especially aircraft: pat. 6565040 US; publ. 20.05.03. 6 p.
18. Composite laminate for a thermal and acoustic insulation blanket: pat. 8292027 US; publ. 23.10.12. 6 p.
19. Fire barrier film laminate: pat. 7767597 US; publ. 03.08.10. 14 p.
20. Modularized insulation systems, apparatus and methods: pat. 7083147 US; publ. 01.08.06. 23 p.
21. Laminate sheet material for fare barrier applications: pat. 6670291 US; publ. 30.12.03. 28 p.
22. Flexible composite multiple layer fire resistant insulation structure: pat. 8062985 US; publ. 22.11.11. 20 p.
23. Ognestojkij sloistyj zvukoteploizolirujushhij material [Fire-resistant layered sound heatisolating material]: pat. 2465145 Ros. Federacija; opubl. 27.10.12. Bjul. №30. 7 s.
24. Balinova Ju.A., Kirienko T.A. Nepreryvnye vysokotemperaturnye oksidnye volokna dlja teplozashhitnyh, teploizoljacionnyh i kompozicionnyh materialov [Continuous high-temperature oksidny fibers for heat-shielding, heatinsulating and composite materials]// Vse materialy. Jen-ciklopedicheskij spravochnik. 2012. №4. S. 24–29.
25. Sposob poluchenija vysokotemperaturnogo volokna na osnove oksida aljuminija [Way of receiving high-temperature fiber on the basis of aluminum oxide]: pat. 2212388 Ros. Federacija; opubl. 20.09.03. Bjul. №34. 6 s.
26. Aviacionnye materialy: spravochnik v 12 t [Aviation materials: the directory in 12 vol.]. M.: VIAM, 2011. T. 9. Teplozashhit-nye, teploizoljacionnye i kompozicionnye materialy, vysokotemperaturnye nemetalli-cheskie pokrytija. S. 31.
27. Babashov V.G., Varrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizolyacionnyj material [High-temperature flexible fibrous insulation material] // Trudy VIAM :electron. nauch.-tehnich. zhurn. 2015. №1. St. 03. Available at: http://viam-works.ru (accessed: March 21, 2016).
28. Ivahnenko Ju.A., Kuzmin V.V., Bespalov A.S. Sostojanie i perspektivy razvitija teplo-zvukoizoljacionnyh pozharobezopasnyh materialov [Condition and prospects of development of heatsound-proof fireproof materials] // Problemy bezopasnosti poletov. 2014. №7. S. 27–30.
29. Zimichev A.M., Varrik N.M. K voprosu primeneniya diskretnyh volokon iz tugoplavkih oksidov dlya formirovaniya serdechnika termostojkih uplotnitelnyh shnurov [On the issue of application of discrete fibers of refractory oxides to form cores of heat-resistant sealing cords] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 07. Available at: http://www.viam-works.ru (accessed: March 21, 2016).
30. Sposob poluchenija voloknistogo teploizoljacionnogo materiala [Way of receiving a fibrous heatinsulating material]: pat. 2553870 Ros. Federacija; opubl. 20.06.15. Bjul. №17. 8 s.
31. Multi-layer fire protection material: pat. 2011126957 US; publ. 02.06.11. 8 p.
32. Fire and heat resistant materials: pat. 2279084 UK; publ. 21.12.94. 42 p.
4.
№1, 2016
УДК 66.017
Studying the phase formation processes and sintering of aluminum silicate glass-ceramics, synthesized by sol-gel method, and composite materials based on it, with high dilatometry, differential scanning calorimetry, electron microscopy and x-ray analysis
Using sol-gel method, spark plasma sintering and hot pressing the powders of Sr-anorthite glass-ceramics and composite materials on its basis are synthesized. The phase for-mation processes and sintering proceeding at their synthesis are studied. Work is carried out within implementation of the complex direction 14.1 «Constructional ceramic composite materials (CCM)» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: composite materials, Sr-anorthite, glass-ceramics, sol-gel, silicon nitride, spark plasma sintering
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Beall G.H. Refractory glass-ceramics based on alkaline earth aluminosilicates // J. of the European Ceramic Society. 2009. № 29. Р. 1211–1219.
3. Refractory glass ceramics: pat. 2009/0056380Al US; publ. 05.03.09.
4. Bansal N.P. Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites // J. of Materials Research. 1997. №12. V. 3. P. 745–753.
5. Ye F., Liu L., Wang Y., Zhou Y., Peng B., Meng Q. Preparation and mechanical properties of carbon nanotube reinforced barium aluminosilicate glass–ceramic composites// Scripta Materialia. 2006. №55. Р. 911–914.
6. Liu L., Ye F., Zhou Y., Zhang Z. Microstructure compatibility and its effect on the mechanical properties of the a-SiC/b-Si3N4 co-reinforced barium aluminosilicate glass ceramic matrix composites // Scripta Materialia. 2010. №63. P. 166–169.
7. Sung Y.M., Kim S. Sintering and crystallization of off-stoichiometric SrO∙Al2O3∙2SiO2 glasses //
J. of Materials Science. 2000. №35. Р. 4293–4299.
8. Roether J.A., Boccaccini A.R. Dispersion-reinforced glass and glass-ceramic matrix composites: Handbook of ceramic composites. Boston: Kluwer Academic Publishers, 2005. P. 485–511.
9. Boccaccini А.R. Continuous fibre reinforced glass and glass-ceramic matrix composites: Handbook of ceramic composites. Boston: Kluwer Academic Publishers, 2005. P. 461–485.
10. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.St. Perspective high-temperature ceramic composite materials // Russian Journal of General Chemistry. 2011. V. 81. №5.
P. 986–991.
11. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevast'janov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlja perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] // Steklo i keramika. 2012. №4. S. 7–11.
12. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.St. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
13. Sorokin O.Ju., Grashhenkov D.V., Solncev S.St., Evdokimov S.A. Keramicheskie kompozicionnye materialy s vysokoj okislitel'noj stojkost'ju dlja perspektivnyh letatel'nyh apparatov (obzor) [Ceramic composite materials with high oxidizing firmness for perspective flight vehicles (rеview)] // Trudy VIAM: jelektron. nauch.-tehnich. zhurnal. 2014. №6. St. 08. Available at: http://www.viam-works.ru (accessed: March 15, 2016). DOI: 10.18577/2307-6046-2014-0-6-8-8.
14. Lebedeva Ju.E., Popovich N.V., Orlova L.A. Zashhitnye vysokotemperaturnye pokrytija dlja kompozicionnyh materialov na osnove SiC [Protective high temperature coatings for composite materials on the basis of SiC] // Trudy VIAM: jelektron. nauch.-tehnich. zhurnal. 2013. №2. St. 06. Available at: http://www.viam-works.ru (accessed: March 15, 2016).
15. Vicens J., Farizy G., Chermant J.-L. Microstructures of ceramic composites with glass–ceramic matrices reinforced by SiC-based fibres // Aerospace Science and Technology. 2003. № 7.
Р. 135–146.
16. Chajnikova A.S., Orlova L.A., Popovich N.V., Lebedeva Ju.E., Solncev S.St. Dispersno-uprochnennye kompozity na osnove steklo/steklokristallicheskih matric: svojstva i oblasti primenenija (obzor) [Dispersnouprochnennye composites on basis glass / steklokristallicheskikh matrixes: properties and scopes (rеview)] // Aviacionnye materialy i tehnologii. 2014. №3. S. 45–54.
17. Ye F., Liu L., Zhang J., Meng Q. Synthesis of 30 wt%BAS/Si3N4 composite by spark plasma sintering // Composites Science and Technology. 2008. №68. P. 1073–1079.
18. Ye F., Liu L., Zhang J., Iwasa M., Su C.-L. Synthesis of silicon nitride-barium aluminosilicate self-reinforced ceramic composite by a two-step pressureless sintering // Composites Science and Technology. 2005. №65. P. 2233–2239.
2. Beall G.H. Refractory glass-ceramics based on alkaline earth aluminosilicates // J. of the European Ceramic Society. 2009. № 29. Р. 1211–1219.
3. Refractory glass ceramics: pat. 2009/0056380Al US; publ. 05.03.09.
4. Bansal N.P. Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites // J. of Materials Research. 1997. №12. V. 3. P. 745–753.
5. Ye F., Liu L., Wang Y., Zhou Y., Peng B., Meng Q. Preparation and mechanical properties of carbon nanotube reinforced barium aluminosilicate glass–ceramic composites// Scripta Materialia. 2006. №55. Р. 911–914.
6. Liu L., Ye F., Zhou Y., Zhang Z. Microstructure compatibility and its effect on the mechanical properties of the a-SiC/b-Si3N4 co-reinforced barium aluminosilicate glass ceramic matrix composites // Scripta Materialia. 2010. №63. P. 166–169.
7. Sung Y.M., Kim S. Sintering and crystallization of off-stoichiometric SrO∙Al2O3∙2SiO2 glasses //
J. of Materials Science. 2000. №35. Р. 4293–4299.
8. Roether J.A., Boccaccini A.R. Dispersion-reinforced glass and glass-ceramic matrix composites: Handbook of ceramic composites. Boston: Kluwer Academic Publishers, 2005. P. 485–511.
9. Boccaccini А.R. Continuous fibre reinforced glass and glass-ceramic matrix composites: Handbook of ceramic composites. Boston: Kluwer Academic Publishers, 2005. P. 461–485.
10. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.St. Perspective high-temperature ceramic composite materials // Russian Journal of General Chemistry. 2011. V. 81. №5.
P. 986–991.
11. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevast'janov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlja perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] // Steklo i keramika. 2012. №4. S. 7–11.
12. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.St. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
13. Sorokin O.Ju., Grashhenkov D.V., Solncev S.St., Evdokimov S.A. Keramicheskie kompozicionnye materialy s vysokoj okislitel'noj stojkost'ju dlja perspektivnyh letatel'nyh apparatov (obzor) [Ceramic composite materials with high oxidizing firmness for perspective flight vehicles (rеview)] // Trudy VIAM: jelektron. nauch.-tehnich. zhurnal. 2014. №6. St. 08. Available at: http://www.viam-works.ru (accessed: March 15, 2016). DOI: 10.18577/2307-6046-2014-0-6-8-8.
14. Lebedeva Ju.E., Popovich N.V., Orlova L.A. Zashhitnye vysokotemperaturnye pokrytija dlja kompozicionnyh materialov na osnove SiC [Protective high temperature coatings for composite materials on the basis of SiC] // Trudy VIAM: jelektron. nauch.-tehnich. zhurnal. 2013. №2. St. 06. Available at: http://www.viam-works.ru (accessed: March 15, 2016).
15. Vicens J., Farizy G., Chermant J.-L. Microstructures of ceramic composites with glass–ceramic matrices reinforced by SiC-based fibres // Aerospace Science and Technology. 2003. № 7.
Р. 135–146.
16. Chajnikova A.S., Orlova L.A., Popovich N.V., Lebedeva Ju.E., Solncev S.St. Dispersno-uprochnennye kompozity na osnove steklo/steklokristallicheskih matric: svojstva i oblasti primenenija (obzor) [Dispersnouprochnennye composites on basis glass / steklokristallicheskikh matrixes: properties and scopes (rеview)] // Aviacionnye materialy i tehnologii. 2014. №3. S. 45–54.
17. Ye F., Liu L., Zhang J., Meng Q. Synthesis of 30 wt%BAS/Si3N4 composite by spark plasma sintering // Composites Science and Technology. 2008. №68. P. 1073–1079.
18. Ye F., Liu L., Zhang J., Iwasa M., Su C.-L. Synthesis of silicon nitride-barium aluminosilicate self-reinforced ceramic composite by a two-step pressureless sintering // Composites Science and Technology. 2005. №65. P. 2233–2239.
5.
№4, 2015
УДК 621.791
V.G. Shmorgun1
INTERACTION OF ALUMINUM AND NICKEL IN CONTACT FUSION
The article examines the processes of liquid-phase interaction in layered intermetallic nickel-aluminum composite material. The study was performed on obtained by the explosion welding samples of composite material nickel AD1+NP2 (4+4 mm) after isothermal heat treatment. As a result of the interaction of nickel with the molten aluminium in the heat treatment the structure of crystallized melt becomes a matrix with dispersed intermetallic inclusions NiAl3 in the solid solution on the aluminum basis. On the nickel side diffusion zone consists of two layers of aluminide NiAl3 and Ni2Al3. The increase of temperature and time of liquid-phase interaction leads to an increase in total thickness of the diffusion zone and concentration of NiAl3 crystallized in an aluminum melt.
Keywords: layered composite material, intermetallic, phase composition, microhardness, diffusion zone.
Reference List
1. Shmorgun V.G., Trykov Ju.P., Slautin O.V., Abramenko S.A., Pisarev S.P. Vlijanie vysokotemperaturnoj termoobrabotki na strukturu i svojstva medno-aljuminievogo sloistogo intermetallidnogo kompozita [Influence of high-heat treatment on structure and property of copper-aluminum layered intermetallidny composite] //Konstrukcii iz kompozicionnyh materialov. 2007. №2. C. 37–42.
2. Krasheninnikov S.V., Kuz'min S.V., Lysak V.I., Chistjakova N.I. Issledovanie kinetiki processa kontaktnogo jevtekticheskogo plavlenija v svarennyh vzryvom titano-medno-stal'nyh kompozitah [Research of kinetics of process of contact evtektichesky melting in welded by explosion titano-copper-steel composites] //Perspektivnye materialy. 2005. №3. C. 75–80.
3. Gurevich L.M., Trykov Ju.P., Zhorov A.N., Gurulev D.N., Loktjushin V.A. Strukturoobrazovanie v titano-aljuminievyh kompozitah v prisutstvii zhidkoj fazy [Structurization in titano-aluminum composites in the presence of liquid phase] //Zhurnal funkcional'nyh materialov. 2008. T.2. №4.
S. 153–157.
4. Slama G., Vignes A. Coating of niobium and niobium alloys with aluminium. Part II. Hot-dipped coatings //Journal of the Less-common Metals. 1971. №24. P. l–21.
2. Krasheninnikov S.V., Kuz'min S.V., Lysak V.I., Chistjakova N.I. Issledovanie kinetiki processa kontaktnogo jevtekticheskogo plavlenija v svarennyh vzryvom titano-medno-stal'nyh kompozitah [Research of kinetics of process of contact evtektichesky melting in welded by explosion titano-copper-steel composites] //Perspektivnye materialy. 2005. №3. C. 75–80.
3. Gurevich L.M., Trykov Ju.P., Zhorov A.N., Gurulev D.N., Loktjushin V.A. Strukturoobrazovanie v titano-aljuminievyh kompozitah v prisutstvii zhidkoj fazy [Structurization in titano-aluminum composites in the presence of liquid phase] //Zhurnal funkcional'nyh materialov. 2008. T.2. №4.
S. 153–157.
4. Slama G., Vignes A. Coating of niobium and niobium alloys with aluminium. Part II. Hot-dipped coatings //Journal of the Less-common Metals. 1971. №24. P. l–21.
6.
№4, 2015
УДК 669.018.44:669.245
ABOUT THE INFLUENCE OF THE FRACTIONAL COMPOSITION OF
SPHERICAL-SHAPED PARTICLES OF SUPERALLOYS ON THE PRESENCE IN A COMPACTED MATERIAL STRUCTURAL ANOMALY NAMELY THAT INDIVIDUAL IN SPHERICAL-SHAPED PARTICLES RETAIN THE SIGNS OF THE CAST STRUCTURE
The article examines the relationship between the difference in the temperature of Y'-phase complete dissolution in the spherical-shaped particles of various sizes of superalloys and anomaly patterns of HIP-material, namely that individual spherical-shaped particles in HIP-material retain the signs of the cast structure after HIP.
Keywords: powder metallurgy, molded structure, superalloys.
Reference List
1. Belov A.F. Nastojashhee i budushhee metallurgii granul [Present and future of metallurgy of granules]. V kn.: Metallurgija granul. VILS. 1983. vyp. 1. S. 3.
2. Anoshkin N.F. Nekotorye aspekty kachestva zharoprochnyh i vysokoprochnyh materialov, izgotavlivaemyh metodom metallurgii granul [Some aspects of quality of the heat resisting and high-strength materials made by method of metallurgy of granules]. V kn.: Metallurgija granul. VILS. 1986. vyp. 3. S. 3.
3. Belov A.F., Anoshkin N.F., Fatkullin O.H. Struktura i svojstva granuliruemyh nikelevyh splavov[Structure and properties of granulated nickel alloys] //M.: Metallurgija. 1984. 128 s.
4. Vinogradova N.I., Mahanek G.V., Nikolaeva N.V., Petrova S.N. Ustojchivost' litoj struktury granuliruemyh splavov na nikelevoj osnove pri termomehanicheskoj obrabotke [Stability of cast structure of granulated nickel-based alloys at thermomechanical processing]. V kn: Metallurgija granul. VILS. 1989. vyp. 5. S. 297.
5. Eremenko V.I., Mahanek G.V., Petrova S.N. Formirovanie struktury granuliruemyh nikelevyh splavov pri gorjachem izotermicheskom pressovanii [Forming of structure of granulated nickel alloys at hot isothermal pressing]. V kn: Metallurgija granul. VILS. 1989. vyp. 5. S. 218.
6. Garibov G.S., Grinc N.M. Jevoljucija harakteristik granuliruemyh splavov dlja aviadvigatelej [Evolution of characteristics of granulated alloys for aircraft engines] //Tehnologija legkih splavov. 2013. №4. S. 106–112.
7. Ryndenkov D.V., Perevozov A.S., Nikitina A.Ju., Rybancova E.N. Nerekristallizovannye granuly v kompaktirovannom monolite iz zharoprochnyh nikelevyh splavov[Nerekristallizovannye of granule in kompaktirovanny monolith from heat resisting nickel alloys] //Metallovedenie i termicheskaja obrabotka metallov. 2014. №8. S. 9–12.
8. Ryndenkov D.V., Astapov A.N., Rybancova E.N. Vlijanie razmera granul iz zharoprochnyh nikelevyh splavov na temperaturu polnogo rastvorenija -fazy [Influence of the size of granules from heat resisting nickel alloys on temperature of complete dissolution of Y'-phase] //Aviacionnaja promyshlennost'. 2015. №2. S. 49–54.
2. Anoshkin N.F. Nekotorye aspekty kachestva zharoprochnyh i vysokoprochnyh materialov, izgotavlivaemyh metodom metallurgii granul [Some aspects of quality of the heat resisting and high-strength materials made by method of metallurgy of granules]. V kn.: Metallurgija granul. VILS. 1986. vyp. 3. S. 3.
3. Belov A.F., Anoshkin N.F., Fatkullin O.H. Struktura i svojstva granuliruemyh nikelevyh splavov[Structure and properties of granulated nickel alloys] //M.: Metallurgija. 1984. 128 s.
4. Vinogradova N.I., Mahanek G.V., Nikolaeva N.V., Petrova S.N. Ustojchivost' litoj struktury granuliruemyh splavov na nikelevoj osnove pri termomehanicheskoj obrabotke [Stability of cast structure of granulated nickel-based alloys at thermomechanical processing]. V kn: Metallurgija granul. VILS. 1989. vyp. 5. S. 297.
5. Eremenko V.I., Mahanek G.V., Petrova S.N. Formirovanie struktury granuliruemyh nikelevyh splavov pri gorjachem izotermicheskom pressovanii [Forming of structure of granulated nickel alloys at hot isothermal pressing]. V kn: Metallurgija granul. VILS. 1989. vyp. 5. S. 218.
6. Garibov G.S., Grinc N.M. Jevoljucija harakteristik granuliruemyh splavov dlja aviadvigatelej [Evolution of characteristics of granulated alloys for aircraft engines] //Tehnologija legkih splavov. 2013. №4. S. 106–112.
7. Ryndenkov D.V., Perevozov A.S., Nikitina A.Ju., Rybancova E.N. Nerekristallizovannye granuly v kompaktirovannom monolite iz zharoprochnyh nikelevyh splavov[Nerekristallizovannye of granule in kompaktirovanny monolith from heat resisting nickel alloys] //Metallovedenie i termicheskaja obrabotka metallov. 2014. №8. S. 9–12.
8. Ryndenkov D.V., Astapov A.N., Rybancova E.N. Vlijanie razmera granul iz zharoprochnyh nikelevyh splavov na temperaturu polnogo rastvorenija -fazy [Influence of the size of granules from heat resisting nickel alloys on temperature of complete dissolution of Y'-phase] //Aviacionnaja promyshlennost'. 2015. №2. S. 49–54.
7.
№4, 2015
УДК 669.018.44
Bondarenko Yu.A.1, Yechin A.B.1, Kolodyazhny M.Yu.1
MODERN RESEARCH IN THE FIELD OF TECHNOLOGY
OF MELTING AND CRYSTALLIZATION FOR THE FORMATION
OF THE NATURAL COMPOSITE STRUCTURE IN A HIGHLY
TEMPERATURE-RESISTANT ALLOYS BASED ON NIOBIUM-SILICON
FOR DETAILS OF THE HOT PATH OF GAS TURBINE ENGINES
Actual engine design due to the creation with new highly heat resistant material, especially for blades and other components of gas turbine engines. An analysis of the scientific and technical documentation that the and development of high-temperature composite materials based on niobium and niobium-silicon hardening phases involved in a number of major countries, including Russia, US, Germany, France, Britain, China, Japan. The study identified the main development trends in this area and the main indicators of the level of technical development.
Keywords: directional solidification; gas turbine engine; superalloy; niobium; in-situ composite structure.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N., Tolorajja V.N., Orehov N.G. Monokristallicheskie nikelevye renijsoderzhashhie splavy dlja turbinnyh lopatok GTD [Single-crystal nickel reniysoderzhashchy alloys for turbine blades of GTD] //MiTOM. 2002. №7. S. 7–11.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
4. Bazyleva O.A., Bondarenko Ju.A., Timofeeva O.B., Chabina E.B. Intermetallidnye kompozicii na osnove Ni3Al, legirovannye reniem [Intermetallidnye of composition on the basis of Ni3Al, alloyed by reniye] //Metallurgija mashinostroenija. 2011. №4. S. 30–34.
5. Bondarenko Ju.A., Kablov E.N., Echin A.B., Surova V.A., Kablov D.E. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh i intermetallidnyh splavov s monokristallicheskoj strukturoj [Development of process of the directed crystallization of blades of GTD from heat resisting and intermetallidny alloys with single-crystal structure] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. C. 20–25.
6. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTD from hot strength alloys with single-crystal and composition structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
7. Bondarenko Ju.A., Bazyleva O.A., Echin A.B., Surova V.A., Narskij A.R. Vysokogradientnaja napravlennaja kristallizacija detalej iz splava VKNA-1V [The high-gradient directed crystallization of details from alloy VKNA-1B] //Litejnoe proizvodstvo. 2012. №6. S. 12–16.
8. Echin A.B., Bondarenko Ju.A. Osobennosti vysokogradientnoj napravlennoj kristallizacii i sovremennoe oborudovanie, ispol'zuemoe pri proizvodstve lopatok gazoturbinnyh dvigatelej [Features of the high-gradient directed crystallization and the modern equipment used by production of blades of gas turbine engines] //Trudy VIAM. 2014. №12. St. 03 (viam-works.ru).
9. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol' napravlennoj kri-stallizacii v resursosberegajushhej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTD] //Trudy VIAM. 2013. №3. St. 01
(viam-works.ru).
10. Kablov E.N., Mubojadzhjan S.A. Zharostojkie i teplozashhitnye pokrytija dlja lopatok turbiny vysokogo davlenija perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTD] //Aviacionnye materialy i tehno-logii. 2012. №S.
S. 60–70.
11. Mubojadzhjan S.A., Budinovskij S.A., Gajamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytija i zharostojkie sloi dlja teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] //Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
12. Bondarenko Ju.A., Kablov E.N., Pankratov V.A. Osobennosti poluchenija rabochih lopatok malogabaritnyh GTD iz splavov tipa VKLS-20 [Features of receiving working blades of small-size GTD from VKLS-20 type alloys] //Aviacionnaja promyshlen-nost'. 1993. №2. S. 9–10.
13. Himushin F.F. Zharoprochnye stali i splavy [Heat resisting there were also alloys]. 2-e izd. M.: Metallurgija. 1969. 752 s.
14. Zaharov M.V., Zaharova A.M. Zharoprochnye splavy [Hot strength alloys]. M.: Metallurgija, 1972. 384 s.
15. Sposob poluchenija kompozicionnogo materiala [Way of receiving composite material]: pat. 2393060 Ros. Federacija; opubl. 27.06.2010. Bjul. №18.
16. Svetlov I.L., Abuzin Ju.A., Babich B.N., Vlasenko S.Ja., Efimochkin I.Ju., Timofeeva O.B. Vysokotemperaturnye niobievye kompozity, uprochnennye silicidami niobija [The high-temperature niobic composites strengthened by silicides of niobium] //Zhurnal funkcional'nyh materialov. 2007. T. 1. №2. S. 48–53.
17. Karpov M.I., Vnukov V.I., Korzhov V.P., Stroganova T.S. i dr. Struktura i mehanicheskie svojstva zharoprochnogo splava sistemy Nb–Si jevtekticheskogo sostava, poluchennogo metodami napravlennoj kristallizacii [Structure and mechanical properties of hot strength alloy of Nb-Si system of the evtektichesky structure received by methods of directed crystallization] //Deformacija i razrushenie materialov. 2012. №12. S. 2–8.
18. Dimiduk D.M., Mendiratta M.G., Subramanian P.R. In Structural Intermetallics. TMS Publica-tions, Warrendale. PA. 1993. Р. 619–630.
19. Bewlay B.P., Jackson M.R., Lipsitt H.A. The Balance of Mechanical and Environmental Properties of a Multielement Niobium-Niobium Silicide-Based In-Situ Composite //Metallurgical and Materials Transactions А. 1996. V. 27A. №12. Р. 3801–3808.
20. Bewlay B.P., Davidenco K. The Effect of alloying on Nb-silicide phase stability //Microsc Microanal. 2005. V. 11. №2. Р. 2030–2031.
21. Povolockij D.Ja., Roshhin V.E., Ryss M.A., Stroganov A.I., Jarcev M.A. Jelektrome-tallurgija stali i ferrosplavov [Electrometallurgy of steel and ferroalloys]. M.: Metallurgija. 1974. 550 s.
22. Huang Q., Guo X.P., Kang Y.W., Song J.X., Qu S.Y., Han Y.F. Microstructures and me-chanical properties of directionally solidified multi-element Nb-Si alloy //Progress in Natural Science: Materials International. 2011. V. 21. Р. 146–152.
23. Drawin S., Justin J.F. Advanced Lightweight Silicide and Nitride Based Materials for Turbo-Engine Applications //Journal Aerospace Lab. 2011. №3. Р. 1–11.
24. Kurc V., Zam P.R. Napravlennaja kristallizacija jevtekticheskih materialov [The directed crystallization of evtektichesky materials]. M.: Metallurgija. 1980. 272 s.
25. Guo H., Guo X. Microstructure evolution and room temperature fracture toughness of an integrally directionally solidified Nb–Ti–Si based ultrahigh temperature alloy //Scripta Materialia. 2011.
V. 64. Р. 637–640.
26. Bewlay B.P., Jackson M.R., Zhao J.C., Subramanian P.R. A Review of Very High-Temperature Nb-Silicide Based Composites //Metallurgical & Materials Transactions A. 2003. V. 34A. №10.
Р. 2043–2052.
2. Kablov E.N., Tolorajja V.N., Orehov N.G. Monokristallicheskie nikelevye renijsoderzhashhie splavy dlja turbinnyh lopatok GTD [Single-crystal nickel reniysoderzhashchy alloys for turbine blades of GTD] //MiTOM. 2002. №7. S. 7–11.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
4. Bazyleva O.A., Bondarenko Ju.A., Timofeeva O.B., Chabina E.B. Intermetallidnye kompozicii na osnove Ni3Al, legirovannye reniem [Intermetallidnye of composition on the basis of Ni3Al, alloyed by reniye] //Metallurgija mashinostroenija. 2011. №4. S. 30–34.
5. Bondarenko Ju.A., Kablov E.N., Echin A.B., Surova V.A., Kablov D.E. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh i intermetallidnyh splavov s monokristallicheskoj strukturoj [Development of process of the directed crystallization of blades of GTD from heat resisting and intermetallidny alloys with single-crystal structure] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. C. 20–25.
6. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTD from hot strength alloys with single-crystal and composition structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
7. Bondarenko Ju.A., Bazyleva O.A., Echin A.B., Surova V.A., Narskij A.R. Vysokogradientnaja napravlennaja kristallizacija detalej iz splava VKNA-1V [The high-gradient directed crystallization of details from alloy VKNA-1B] //Litejnoe proizvodstvo. 2012. №6. S. 12–16.
8. Echin A.B., Bondarenko Ju.A. Osobennosti vysokogradientnoj napravlennoj kristallizacii i sovremennoe oborudovanie, ispol'zuemoe pri proizvodstve lopatok gazoturbinnyh dvigatelej [Features of the high-gradient directed crystallization and the modern equipment used by production of blades of gas turbine engines] //Trudy VIAM. 2014. №12. St. 03 (viam-works.ru).
9. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol' napravlennoj kri-stallizacii v resursosberegajushhej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTD] //Trudy VIAM. 2013. №3. St. 01
(viam-works.ru).
10. Kablov E.N., Mubojadzhjan S.A. Zharostojkie i teplozashhitnye pokrytija dlja lopatok turbiny vysokogo davlenija perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTD] //Aviacionnye materialy i tehno-logii. 2012. №S.
S. 60–70.
11. Mubojadzhjan S.A., Budinovskij S.A., Gajamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytija i zharostojkie sloi dlja teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] //Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
12. Bondarenko Ju.A., Kablov E.N., Pankratov V.A. Osobennosti poluchenija rabochih lopatok malogabaritnyh GTD iz splavov tipa VKLS-20 [Features of receiving working blades of small-size GTD from VKLS-20 type alloys] //Aviacionnaja promyshlen-nost'. 1993. №2. S. 9–10.
13. Himushin F.F. Zharoprochnye stali i splavy [Heat resisting there were also alloys]. 2-e izd. M.: Metallurgija. 1969. 752 s.
14. Zaharov M.V., Zaharova A.M. Zharoprochnye splavy [Hot strength alloys]. M.: Metallurgija, 1972. 384 s.
15. Sposob poluchenija kompozicionnogo materiala [Way of receiving composite material]: pat. 2393060 Ros. Federacija; opubl. 27.06.2010. Bjul. №18.
16. Svetlov I.L., Abuzin Ju.A., Babich B.N., Vlasenko S.Ja., Efimochkin I.Ju., Timofeeva O.B. Vysokotemperaturnye niobievye kompozity, uprochnennye silicidami niobija [The high-temperature niobic composites strengthened by silicides of niobium] //Zhurnal funkcional'nyh materialov. 2007. T. 1. №2. S. 48–53.
17. Karpov M.I., Vnukov V.I., Korzhov V.P., Stroganova T.S. i dr. Struktura i mehanicheskie svojstva zharoprochnogo splava sistemy Nb–Si jevtekticheskogo sostava, poluchennogo metodami napravlennoj kristallizacii [Structure and mechanical properties of hot strength alloy of Nb-Si system of the evtektichesky structure received by methods of directed crystallization] //Deformacija i razrushenie materialov. 2012. №12. S. 2–8.
18. Dimiduk D.M., Mendiratta M.G., Subramanian P.R. In Structural Intermetallics. TMS Publica-tions, Warrendale. PA. 1993. Р. 619–630.
19. Bewlay B.P., Jackson M.R., Lipsitt H.A. The Balance of Mechanical and Environmental Properties of a Multielement Niobium-Niobium Silicide-Based In-Situ Composite //Metallurgical and Materials Transactions А. 1996. V. 27A. №12. Р. 3801–3808.
20. Bewlay B.P., Davidenco K. The Effect of alloying on Nb-silicide phase stability //Microsc Microanal. 2005. V. 11. №2. Р. 2030–2031.
21. Povolockij D.Ja., Roshhin V.E., Ryss M.A., Stroganov A.I., Jarcev M.A. Jelektrome-tallurgija stali i ferrosplavov [Electrometallurgy of steel and ferroalloys]. M.: Metallurgija. 1974. 550 s.
22. Huang Q., Guo X.P., Kang Y.W., Song J.X., Qu S.Y., Han Y.F. Microstructures and me-chanical properties of directionally solidified multi-element Nb-Si alloy //Progress in Natural Science: Materials International. 2011. V. 21. Р. 146–152.
23. Drawin S., Justin J.F. Advanced Lightweight Silicide and Nitride Based Materials for Turbo-Engine Applications //Journal Aerospace Lab. 2011. №3. Р. 1–11.
24. Kurc V., Zam P.R. Napravlennaja kristallizacija jevtekticheskih materialov [The directed crystallization of evtektichesky materials]. M.: Metallurgija. 1980. 272 s.
25. Guo H., Guo X. Microstructure evolution and room temperature fracture toughness of an integrally directionally solidified Nb–Ti–Si based ultrahigh temperature alloy //Scripta Materialia. 2011.
V. 64. Р. 637–640.
26. Bewlay B.P., Jackson M.R., Zhao J.C., Subramanian P.R. A Review of Very High-Temperature Nb-Silicide Based Composites //Metallurgical & Materials Transactions A. 2003. V. 34A. №10.
Р. 2043–2052.