Articles
Functional and smart materials
1.
№5-6, 2018
УДК 621.318.2
Davydova E.A.1, Piskorskiy V.P.1, Nazarkin R.M.1
THE PHASE COMPOSITION AND MAGNETIC PROPERTIES OF SINTERED THERMOSTABLE HARD-MAGNETIC MATERIALS OF THE Pr–Dy(Gd)–Fe–Co–B SYSTEM (review)
The review of literature on the problem of phase composition and magnetic properties of thermostable hard-magnetic materials for the PrDy(Gd)FeCoB system are prepared. The influence of alloying by heavy and light rare-earth metals and cobalt on the magnetic properties of NdFeB magnets is analyzed. The influence of manufacturing process conditions and heat treatment together with alloying by copper and gadolinium on the magnetic properties of the Pr–Dy–Fe–Co–B materials are showed.
Keywords: phase composition, hard-magnetic materials, rare-earth metals, heat treatment, magnetic properties.
Reference List
1. Savchenko A.G., Menushenkov V.P. Redkozemelnye postoyannye magnity: printsipialnye osnovy razrabotki i tekhnologiya proizvodstva [Rare-earth constant magnets: basic bases of development and production technology] // Materialovedenie i metallurgiya. Perspektivnye tekhnologii i oborudovanie: materialy seminara. M.: MGIU, 2003. S. 125–157.
2. Davydova E.A. Fazovyj sostav i magnitnye svojstva magnitotverdykh materialov sistemy Rr–Du(Gd)–Fe–So–B: dis. ... kand. tekhn. nauk [Phase structure and magnetic properties of magneto hard materials of Rr–Du system (Gd)–Fe–So–B: thesis, cand. Sc. (Tech.)]. M., 2012. 179 s.
3. Valeev R.A. Termostabilnye magnitotverdye materialy na osnove sistemy Nd–Dy–Fe–Co–B, legirovannye nekotorymi legkimi redkozemelnymi metallami: dis. … kand. tekhn. nauk [Thermostable magneto hard materials on the basis of the Nd–Dy–Fe–Co–B system, alloyed by some light rare earth metals: thesis, cand. Sc. (Tech.)]. M., 2005. 137 s.
4. Arai S., Shibata T. Highly heat-resistant Nd–Fe–Co–B system permanent magnets // IEEE Transactions on Magnetics. 1985. Vol. MAG-21. No. 5. P. 1952–1954.
5. Teylor K. Intermetallicheskie soedineniya redkozemelnyh metallov [Intermetallic compounds of rare earth metals]. M.: Mir, 1974. 221 s.
6. Lukin A.A., Dormidontov A.G., Egorov S.M. Perspektivnye materialy dlya postoyannyh magnitov. Obzor [Perspective materials for constant magnets. Review]. Seriya VIII. M.: Poisk, 1990. 158 s.
7. Savchenko A.G., Menushenkov V.P. High-energy-product rare-earth permanent magnets: Fundamental principles of development and manufacturing // The Physics of Metals and Metallography. 2001. Vol. 91. Suppl. 1. P. S242–S248.
8. Piskorskiy V.P., Valeev R.A., Tereshina I.S., Bronfin M.B., Chabina E.B., Davydova E.A., Buzenkov A.V. Magnitnye svoystva i fazovyy sostav materialov sistemy Pr–Dy–Fe–Co–B [Magnetic properties and phase structure of materials of Pr–Dy–Fe–Co–B system] // Perspektivnye materialy. 2007. №3. C. 16–19.
9. Fritz K., Guth J., Grieb B., Henig E., Petzow G. Magnetic properties of sintered Dy substituted Nd–Fe–B magnets // Zeitschrift für Metallkunde. 1992. Vol. 83. No. 11. P. 791–793.
10. Piskorskiy V.P., Valeev R.A., Buzenkov A.V., Davydova E.A., Zolotareva M.V. Vliyanie vysokih kontsentratsiy kobalta na svoystva magnitov Pr–Dy–Fe–Co–B [Influence of high concentration of cobalt on properties of magnets of Pr–Dy–Fe–Co–B] // Perspektivnye materialy. 2008. Spets. vyp. S. 268–271.
11. Menushenkov V.P., Savchenko A.G. Termoobrabotka, mikrostruktura i koertsitivnaya sila spechennyh magnitov na osnove (Nd, Dy)–Fe–B [Heat treatment, microstructure and coercive force of the sintered magnets on basis (Nd, Dy)–Fe–B] // Materialovedenie i metallurgiya. Perspektivnye tekhnologii i oborudovanie: materialy seminara. M.: MGIU, 2003. S. 158–185.
12. Tokareva N.V. Temperaturnoe povedenie namagnichennosti i fazovyy sostav magnitotverdyh materialov sistemy (Nd, Dy, R)–(Fe, Co)–B (R=Er, Gd, Sm, Pr): dis. … kand. tekhn. nauk [Temperature behavior of magnetization and phase structure of magneto hard materials of system (Nd, Dy, R)–(Fe, Co)–B (R=Er, Gd, Sm, Pr): thesis, cand. Sc. (Tech.)]. M., 2007. 142 s.
13. Kablov E.N., Petrakov A.F., Piskorskiy V.P. Magnity Nd–Fe–B s vysokoy temperaturnoy stabilnostyu [Nd–Fe–B magnets with high temperature stability] // Sb. tez. dokl. 13-y Mezhdunar. konf. po postoyannym magnitam. Suzdal, 2000. S. 64.
14. Nazarova N.V., Valeev R.A., Piskorskiy V.P., Stepanova S.V. Vliyanie gadoliniya i erbiya na magnitnye svoystva materialov sistemy R–(Fe, Co)–B [Influence of gadolinium and erbiya on magnetic properties of materials of R-system (Fe, Co)–B] // Aktualnye voprosy aviatsionnogo materialovedeniya: sb. tez. dokl. M.: VIAM, 2007. S. 163.
15. Buschow K.H.J. New development in hard magnetic materials // Reports on Progress in Physics. 1991. Vol. 54. P. 1123–1213.
16. Smart D. Effektivnoe pole v teorii magnetizma [Effective field in the magnetism theory]. M.: Mir, 1968. 271 s.
17. Piskorskiy V.P., Valeev R.A., Davydova V.A. Raschet temperaturnogo koeffitsienta induktsii materialov Pr–Dy–Fe–Co–B v priblizhenii molekulyarnogo polya [Calculation of temperature coefficient of induction of the materials Pr–Dy–Fe–Co–B in approach of molecular field] // Perspektivnye materialy. 2008. Spets. vyp. S. 329–331.
18. Kablov E.N., Piskorskiy V.P., Bruk L.A. Postoyannye magnity iz splavov Nd–Fe–B [Constant magnets from Nd–Fe–B alloys] // Aviatsionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubil. nauch.-tekhnich. sb. M.: MISIS–VIAM, 2002. S. 191–197.
19. Chen Y., Liang J., Chen X., Liu Q. Phase relation in the Gd–Co–B // Journal of Alloys and Compounds. 2000. Vol. 296. P. L1–L3.
20. 20. Zhoy S.Z., Guo C., Hu Q. Magnetic properties and microstruture of iron-based rare-earth magnets with low-temperature coefficients // Journal of Applied Phisics. 1988. Vol. 63. No. 8. P. 3327–3329.
21. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Valeev R.A. i dr. Fazovyj sostav spechennyh materialov sistemy Nd–Dy–Fe–Co–B [Phase composition of Nd–Dy–Fe–Co–B sintered materials] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 95–100. DOI: 10.18577/2071-9140-2014-0-s5-95-100.
22. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie tseriya i ittriya na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Dу–Fе–Со–В [Influence of cerium and yttrium on magnetic properties and phase structure of material of system Nd–Dу–Fе–Со–В] // Metallovedenie i termicheskaya obrabotka metallov. 2005. №10. S. 25–29.
23. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Rezchikova I.I., Valeev R.A., Davydova E.A. Fazovyj sostav spechennyh materialov sistemy Рr–Dу–Fе–Со–В [Phase composition of the Рr–Dу–Fе–Со–В sintered materials] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 5–10. DOI: 10.18577/2071-9140-2015-0-S2-5-10.
24. Bogacz B.F., Pedziwiatr A.T. Mossbauer Investigation of spin arrangements in Er2-xCexFe14B // Acta Physica Polonica A. 2008. Vol. 114. No. 6. P. 1509–1516.
25. Abache C., Oesterreicher J. Magnetic anisotropies and spin reorientations of R2Fe14B-type com-pounds // Journal of Applied Phisics. 1986. Vol. 60. No. 10. P. 3671–3679.
26. Kablov E.N., Ospennikova O.G., Cherednichenko I.V., Rezchikova I.I., Valeev R.A., Piskorskij V.P. Vliyanie soderzhaniya medi na fazovyj sostav i magnitnye svojstva termostabil'nyh spechennyh magnitov sistem Nd–Dy–Fe–Co–B i Pr–Dy–Fe–Co–B [Influence of Cu content to phase structure and magnetic properties of thermostable sintered magnets of Nd–Dy–Fe–Co–B and Pr–Dy–Fe–Co–B systems] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 11–19. DOI: 10.18577/2071-9140-2015-0-S2-11-19.
27. Shimoda T., Akioka K., Kobayashi O., Yamagami T. High-energy cast Pr–Fe–B magnets // Journal of Applied Phisics. 1988. Vol. 64. No. 10. P. 5990–5992.
28. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Valeev R.A. i dr. Sravnenie temperaturnoj stabilnosti magnitov na osnove SmCo i PrDy–FeCo–B [Comparison of the temperature stability of SmCo and PrDy–FeCo–B magnets] // Aviacionnye materialy i tehnologii. 2015. №S2. S. 42–46. DOI: 10.18577/2071-9140-2015-0-S2-42-46.
29. Tang W., Zhoy S., Wang R. Preparation and microstructure of La-containing R–Fe–B permanent magnets // Journal of Applied Phisics. 1989. Vol. 65. No. 8. P. 3142–3145.
30. Herbst J.F. R2Fe14B materials: intrinsic properties and technological aspects // Reviews of modern physics. 1991. Vol. 63. No. 4. P. 819–898.
31. Oreshkin M.A., Savchenko A.G., Vekshin B.S. i dr. Sovmestimost protsessov proizvodstva magnitov iz splavov Sm–Co i Nd–Fe–B [Compatibility of processes of production of magnets from Sm–Co and Nd–Fe–B alloys] // Metally. 1996. №4. S. 111–116.
32. Piskorskiy V.P. Termostabilnye magnitotverdye materialy na osnove redkozemelnyh intermetallidov s tetragonalnoy strukturoy: avtoref. dis. … dokt. tekhn. nauk [Thermostable magnitotverdy materials on the basis of rare-earth intermetallic compound with tetragonal structure: thesis abstract, Dr. Sc. (Tech.)]. M., 2014. S. 25.
33. Wu L., Zhan W., Chen X., Chen X. The effect of boron on Tb0,27Dy0,73Fe2 compounds // Journal of Magnetism and Magnetic. Materials. 1995. Vol. 139. P. 335–338.
34. Piskorskij V.P., Burkhanov G.S., Ospennikova O.G., Valeev R.A., Tereshina I.S., Davydova E.A. Vliyanie termicheskoj obrabotki na svojstva nanostrukturirovannykh magnitotverdykh materialov Рr–Dу–Fе–Со–В [Influence of thermal processing on properties of the nanostructured magnitotverdy materials Рr–Dу–Fе–Со–В] // Metally. 2010. №3. S. 84–91.
35. Kuzma Yu.B., Chaban N.F. Dvoynye i troynye sistemy, soderzhashchie bor [The double and threefold systems containing boron]. M.: Metallurgiya, 1990. 317 s.
36. Petrakov A.F., Piskorskij V.P., Burkhanov G.S., Repina M.V., Ivanov S.I. Osobennosti spekaniya magnitov Nd(Рr)–Dу–Fе–Со–В s vysokim soderzhaniem Co [Features of agglomeration of magnets of Nd(Рr)–Dу–Fе–Со–В with the high contents Co] // Metallovedenie i termicheskaya obrabotka metallov. 2012. №7. S. 3–9.
37. Glebov V.A., Lukin A.A. Nanokristallicheskie redkozemelnye magnitotverdye materialy [Nanocrystal rare-earth magnitotverdy materials]. M.: VNIINM, 2007. 179 c.
38. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
39. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie tseriya i ittriya na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Dу–Fе–Со–В [Influence of cerium and yttrium on magnetic properties and phase structure of material of system Nd–Dу–Fе–Со–В] // Metallovedenie i termicheskaya obrabotka metallov. 2005. №10. S. 25–29.
40. Herbst J.F., Croat J.J. Neodymium-iron-boron permanent magnets // Journal of Magnetism and Magnetic. Materials. 1991. Vol. 100. P. 57–78.
41. Kablov E.N., Petrakov A.F., Piskorskiy V.P., Valeev R.A., Nazarova N.V. Vliyanie disproziya i kobalta na temperaturnuyu zavisimost' namagnichennosti i fazovyy sostav materiala sistemy Nd–Dy–Fe–Co–B [Influence disproziya and cobalt on temperature dependence of magnetization and phase structure of material of Nd–Dy–Fe–Co–B system] // MiTOM. 2007. №4. S. 3–10.
42. Rodewall W., Wall B., Ratter M., Uestuener K. Topology оf Nd–Fe–B magnets with a high energy density // IEEE Transactions on Magnetic. 2003. Vol. 39. No. 5. P. 2932–2934.
2. Davydova E.A. Fazovyj sostav i magnitnye svojstva magnitotverdykh materialov sistemy Rr–Du(Gd)–Fe–So–B: dis. ... kand. tekhn. nauk [Phase structure and magnetic properties of magneto hard materials of Rr–Du system (Gd)–Fe–So–B: thesis, cand. Sc. (Tech.)]. M., 2012. 179 s.
3. Valeev R.A. Termostabilnye magnitotverdye materialy na osnove sistemy Nd–Dy–Fe–Co–B, legirovannye nekotorymi legkimi redkozemelnymi metallami: dis. … kand. tekhn. nauk [Thermostable magneto hard materials on the basis of the Nd–Dy–Fe–Co–B system, alloyed by some light rare earth metals: thesis, cand. Sc. (Tech.)]. M., 2005. 137 s.
4. Arai S., Shibata T. Highly heat-resistant Nd–Fe–Co–B system permanent magnets // IEEE Transactions on Magnetics. 1985. Vol. MAG-21. No. 5. P. 1952–1954.
5. Teylor K. Intermetallicheskie soedineniya redkozemelnyh metallov [Intermetallic compounds of rare earth metals]. M.: Mir, 1974. 221 s.
6. Lukin A.A., Dormidontov A.G., Egorov S.M. Perspektivnye materialy dlya postoyannyh magnitov. Obzor [Perspective materials for constant magnets. Review]. Seriya VIII. M.: Poisk, 1990. 158 s.
7. Savchenko A.G., Menushenkov V.P. High-energy-product rare-earth permanent magnets: Fundamental principles of development and manufacturing // The Physics of Metals and Metallography. 2001. Vol. 91. Suppl. 1. P. S242–S248.
8. Piskorskiy V.P., Valeev R.A., Tereshina I.S., Bronfin M.B., Chabina E.B., Davydova E.A., Buzenkov A.V. Magnitnye svoystva i fazovyy sostav materialov sistemy Pr–Dy–Fe–Co–B [Magnetic properties and phase structure of materials of Pr–Dy–Fe–Co–B system] // Perspektivnye materialy. 2007. №3. C. 16–19.
9. Fritz K., Guth J., Grieb B., Henig E., Petzow G. Magnetic properties of sintered Dy substituted Nd–Fe–B magnets // Zeitschrift für Metallkunde. 1992. Vol. 83. No. 11. P. 791–793.
10. Piskorskiy V.P., Valeev R.A., Buzenkov A.V., Davydova E.A., Zolotareva M.V. Vliyanie vysokih kontsentratsiy kobalta na svoystva magnitov Pr–Dy–Fe–Co–B [Influence of high concentration of cobalt on properties of magnets of Pr–Dy–Fe–Co–B] // Perspektivnye materialy. 2008. Spets. vyp. S. 268–271.
11. Menushenkov V.P., Savchenko A.G. Termoobrabotka, mikrostruktura i koertsitivnaya sila spechennyh magnitov na osnove (Nd, Dy)–Fe–B [Heat treatment, microstructure and coercive force of the sintered magnets on basis (Nd, Dy)–Fe–B] // Materialovedenie i metallurgiya. Perspektivnye tekhnologii i oborudovanie: materialy seminara. M.: MGIU, 2003. S. 158–185.
12. Tokareva N.V. Temperaturnoe povedenie namagnichennosti i fazovyy sostav magnitotverdyh materialov sistemy (Nd, Dy, R)–(Fe, Co)–B (R=Er, Gd, Sm, Pr): dis. … kand. tekhn. nauk [Temperature behavior of magnetization and phase structure of magneto hard materials of system (Nd, Dy, R)–(Fe, Co)–B (R=Er, Gd, Sm, Pr): thesis, cand. Sc. (Tech.)]. M., 2007. 142 s.
13. Kablov E.N., Petrakov A.F., Piskorskiy V.P. Magnity Nd–Fe–B s vysokoy temperaturnoy stabilnostyu [Nd–Fe–B magnets with high temperature stability] // Sb. tez. dokl. 13-y Mezhdunar. konf. po postoyannym magnitam. Suzdal, 2000. S. 64.
14. Nazarova N.V., Valeev R.A., Piskorskiy V.P., Stepanova S.V. Vliyanie gadoliniya i erbiya na magnitnye svoystva materialov sistemy R–(Fe, Co)–B [Influence of gadolinium and erbiya on magnetic properties of materials of R-system (Fe, Co)–B] // Aktualnye voprosy aviatsionnogo materialovedeniya: sb. tez. dokl. M.: VIAM, 2007. S. 163.
15. Buschow K.H.J. New development in hard magnetic materials // Reports on Progress in Physics. 1991. Vol. 54. P. 1123–1213.
16. Smart D. Effektivnoe pole v teorii magnetizma [Effective field in the magnetism theory]. M.: Mir, 1968. 271 s.
17. Piskorskiy V.P., Valeev R.A., Davydova V.A. Raschet temperaturnogo koeffitsienta induktsii materialov Pr–Dy–Fe–Co–B v priblizhenii molekulyarnogo polya [Calculation of temperature coefficient of induction of the materials Pr–Dy–Fe–Co–B in approach of molecular field] // Perspektivnye materialy. 2008. Spets. vyp. S. 329–331.
18. Kablov E.N., Piskorskiy V.P., Bruk L.A. Postoyannye magnity iz splavov Nd–Fe–B [Constant magnets from Nd–Fe–B alloys] // Aviatsionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubil. nauch.-tekhnich. sb. M.: MISIS–VIAM, 2002. S. 191–197.
19. Chen Y., Liang J., Chen X., Liu Q. Phase relation in the Gd–Co–B // Journal of Alloys and Compounds. 2000. Vol. 296. P. L1–L3.
20. 20. Zhoy S.Z., Guo C., Hu Q. Magnetic properties and microstruture of iron-based rare-earth magnets with low-temperature coefficients // Journal of Applied Phisics. 1988. Vol. 63. No. 8. P. 3327–3329.
21. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Valeev R.A. i dr. Fazovyj sostav spechennyh materialov sistemy Nd–Dy–Fe–Co–B [Phase composition of Nd–Dy–Fe–Co–B sintered materials] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 95–100. DOI: 10.18577/2071-9140-2014-0-s5-95-100.
22. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie tseriya i ittriya na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Dу–Fе–Со–В [Influence of cerium and yttrium on magnetic properties and phase structure of material of system Nd–Dу–Fе–Со–В] // Metallovedenie i termicheskaya obrabotka metallov. 2005. №10. S. 25–29.
23. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Rezchikova I.I., Valeev R.A., Davydova E.A. Fazovyj sostav spechennyh materialov sistemy Рr–Dу–Fе–Со–В [Phase composition of the Рr–Dу–Fе–Со–В sintered materials] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 5–10. DOI: 10.18577/2071-9140-2015-0-S2-5-10.
24. Bogacz B.F., Pedziwiatr A.T. Mossbauer Investigation of spin arrangements in Er2-xCexFe14B // Acta Physica Polonica A. 2008. Vol. 114. No. 6. P. 1509–1516.
25. Abache C., Oesterreicher J. Magnetic anisotropies and spin reorientations of R2Fe14B-type com-pounds // Journal of Applied Phisics. 1986. Vol. 60. No. 10. P. 3671–3679.
26. Kablov E.N., Ospennikova O.G., Cherednichenko I.V., Rezchikova I.I., Valeev R.A., Piskorskij V.P. Vliyanie soderzhaniya medi na fazovyj sostav i magnitnye svojstva termostabil'nyh spechennyh magnitov sistem Nd–Dy–Fe–Co–B i Pr–Dy–Fe–Co–B [Influence of Cu content to phase structure and magnetic properties of thermostable sintered magnets of Nd–Dy–Fe–Co–B and Pr–Dy–Fe–Co–B systems] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 11–19. DOI: 10.18577/2071-9140-2015-0-S2-11-19.
27. Shimoda T., Akioka K., Kobayashi O., Yamagami T. High-energy cast Pr–Fe–B magnets // Journal of Applied Phisics. 1988. Vol. 64. No. 10. P. 5990–5992.
28. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Valeev R.A. i dr. Sravnenie temperaturnoj stabilnosti magnitov na osnove SmCo i PrDy–FeCo–B [Comparison of the temperature stability of SmCo and PrDy–FeCo–B magnets] // Aviacionnye materialy i tehnologii. 2015. №S2. S. 42–46. DOI: 10.18577/2071-9140-2015-0-S2-42-46.
29. Tang W., Zhoy S., Wang R. Preparation and microstructure of La-containing R–Fe–B permanent magnets // Journal of Applied Phisics. 1989. Vol. 65. No. 8. P. 3142–3145.
30. Herbst J.F. R2Fe14B materials: intrinsic properties and technological aspects // Reviews of modern physics. 1991. Vol. 63. No. 4. P. 819–898.
31. Oreshkin M.A., Savchenko A.G., Vekshin B.S. i dr. Sovmestimost protsessov proizvodstva magnitov iz splavov Sm–Co i Nd–Fe–B [Compatibility of processes of production of magnets from Sm–Co and Nd–Fe–B alloys] // Metally. 1996. №4. S. 111–116.
32. Piskorskiy V.P. Termostabilnye magnitotverdye materialy na osnove redkozemelnyh intermetallidov s tetragonalnoy strukturoy: avtoref. dis. … dokt. tekhn. nauk [Thermostable magnitotverdy materials on the basis of rare-earth intermetallic compound with tetragonal structure: thesis abstract, Dr. Sc. (Tech.)]. M., 2014. S. 25.
33. Wu L., Zhan W., Chen X., Chen X. The effect of boron on Tb0,27Dy0,73Fe2 compounds // Journal of Magnetism and Magnetic. Materials. 1995. Vol. 139. P. 335–338.
34. Piskorskij V.P., Burkhanov G.S., Ospennikova O.G., Valeev R.A., Tereshina I.S., Davydova E.A. Vliyanie termicheskoj obrabotki na svojstva nanostrukturirovannykh magnitotverdykh materialov Рr–Dу–Fе–Со–В [Influence of thermal processing on properties of the nanostructured magnitotverdy materials Рr–Dу–Fе–Со–В] // Metally. 2010. №3. S. 84–91.
35. Kuzma Yu.B., Chaban N.F. Dvoynye i troynye sistemy, soderzhashchie bor [The double and threefold systems containing boron]. M.: Metallurgiya, 1990. 317 s.
36. Petrakov A.F., Piskorskij V.P., Burkhanov G.S., Repina M.V., Ivanov S.I. Osobennosti spekaniya magnitov Nd(Рr)–Dу–Fе–Со–В s vysokim soderzhaniem Co [Features of agglomeration of magnets of Nd(Рr)–Dу–Fе–Со–В with the high contents Co] // Metallovedenie i termicheskaya obrabotka metallov. 2012. №7. S. 3–9.
37. Glebov V.A., Lukin A.A. Nanokristallicheskie redkozemelnye magnitotverdye materialy [Nanocrystal rare-earth magnitotverdy materials]. M.: VNIINM, 2007. 179 c.
38. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
39. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie tseriya i ittriya na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Dу–Fе–Со–В [Influence of cerium and yttrium on magnetic properties and phase structure of material of system Nd–Dу–Fе–Со–В] // Metallovedenie i termicheskaya obrabotka metallov. 2005. №10. S. 25–29.
40. Herbst J.F., Croat J.J. Neodymium-iron-boron permanent magnets // Journal of Magnetism and Magnetic. Materials. 1991. Vol. 100. P. 57–78.
41. Kablov E.N., Petrakov A.F., Piskorskiy V.P., Valeev R.A., Nazarova N.V. Vliyanie disproziya i kobalta na temperaturnuyu zavisimost' namagnichennosti i fazovyy sostav materiala sistemy Nd–Dy–Fe–Co–B [Influence disproziya and cobalt on temperature dependence of magnetization and phase structure of material of Nd–Dy–Fe–Co–B system] // MiTOM. 2007. №4. S. 3–10.
42. Rodewall W., Wall B., Ratter M., Uestuener K. Topology оf Nd–Fe–B magnets with a high energy density // IEEE Transactions on Magnetic. 2003. Vol. 39. No. 5. P. 2932–2934.
2.
№5-6, 2018
УДК 669-15:669.85
Davydova E.A.1, Rezchikova I.I.1, Nazarkin R.M.1, Chabina E.B.1
HEAT TREATMENT EFFECT ON TEMPERATURE STABLE HARD MAGNETIC MATERIALS OF REM–Fe–Co–B SYSTEM STRUCTURE AND PHASE COMPOSITION
Temperature stable hard magnetic materials of REM–Fe–Co–B system (Pr–Dy–Fe–Co–B and Pr–Dy–Се–Fe–Co–B) structure and phase composition were investigated in initial condition and after heat treatment.
Keywords: х-ray microanalysis, phase composition, microstructure, hard magnetic materials.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Kablov E.N., Piskorskij V.P., Burkhanov G.S., Valeev R.A., Moiseeva N.S., Stepanova S.V., Petrakov A.F., Tereshina I.S., Repina M.V. Termostabilnye koltsevye magnity s radialnoj teksturoj na osnove Nd(Рr)–Dу–Fе–Со–В [Thermostable ring magnets with radial structure on the basis of Nd(Рr)–Dу–Fе–Со–В] // Fizika i khimiya obrabotki materialov. 2011. №3. S. 43–47.
4. Melnikov S.A., Piskorskij V.P., Belyaev I.V., Valeev R.A., Verklov M.M., Ivanov S.I., Ospennikova O.G., Parshin A.P. Temperaturnye zavisimosti magnitnykh svojstv spechennykh splavov Nd–Re–В, legirovannykh splavami RZM s perekhodnymi metallami [Temperature dependences of magnetic properties of sintered alloys Nd–Re–В, RZM alloyed by alloys with transition metals] // Perspektivnye materialy. 2011. №11. S. 201–207.
5. Piskorskij V.P., Burkhanov G.S., Ospennikova O.G., Valeev R.A., Tereshina I.S., Davydova E.A. Raschet temperaturnogo koeffitsienta induktsii nanostrukturirovannykh magnitotverdykh materialov Рr–Dу–Gd–Fе–Со–В metodom molekulyarnogo polya [Calculation of temperature coefficient of induction of the nanostructured magnitotverdy materials Рr–Dу–Gd–Fе–Со–В method of molecular field] // Metally. 2010. №1. S. 64–67.
6. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: August 6, 2018).
7. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Rezchikova I.I., Valeev R.A., Davydova E.A. Fazovyj sostav spechennyh materialov sistemy Рr–Dу–Fе–Со–В [Phase composition of the Рr–Dу–Fе–Со–В sintered materials] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 5–10. DOI: 10.18577/2071-9140-2015-0-S2-5-10.
8. Petrakov A.F., Piskorskij V.P., Burkhanov G.S., Repina M.V., Ivanov S.I. Osobennosti spekaniya magnitov Nd(Рr)–Dу–Fе–Со–В s vysokim soderzhaniem Co [Features of agglomeration of magnets of Nd(Рr)–Dу–Fе–Со–В with the high contents Co] // Metallovedenie i termicheskaya obrabotka metallov. 2012. №7. S. 3–9.
9. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie prazeodima na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Рr–Dу–Fе–Со–В [Influence prazeodima on magnetic properties and phase structure of material of system Nd–Рr–Dу–Fе–Со–В] // Metallovedenie i termicheskaya obrabotka metallov. 2005. №6 (600). S. 12–16.
10. Davydova E.A., Piskorskij V.P., Moiseeva N.S., Chabina E.B. Vliyanie temperatury i dlitelnosti spekaniya na strukturu i fazovyj sostav termostabilnykh magnitotverdykh materialov sistemy RZM–Fe–Co–B [Influence of temperature and длительности agglomeration on structure and phase structure thermostable magnitotverdy материалов systems RZM–Fe–Co–B] // Metally. 2015. №6. S. 47–51.
11. Chen Y., Liang J., Lin Q. et al. The ternary system neodymium–cobalt–boron // Journal Alloys Compd. 1999. Vol. 288. No. 1–2. P. 170–172.
12. Kablov E.N., Ospennikova O.G., Davydova E.A., Buzenkov A.V., Valeev R.A., Morgunov R.B., Piskorskij V.P. Vliyanie otzhiga splava Рr–Dу–Fе–Со–В na ego fazovyj sostav i svojstva spechennykh magnitov, izgotovlennykh iz nego [Influence of annealing of alloy Рr–Dу–Fе–Со–В on its phase structure and properties of the sintered magnets made of it] // Metally. 2018. №2. S. 28–32.
13. Davydova E.A. Fazovyj sostav i magnitnye svojstva magnitotverdykh materialov sistemy Rr–Du(Gd)–Fe–So–B: avtoref. dis. ... kand. tekhn. Nauk [Phase structure and magnetic properties of magneto hard materials of Rr–Du system (Gd)–Fe–So–B: thesis, cand. Sc. (Tech.)]. M., 2012. 25 s.
14. Cook B.A., Harringa J.L., Laabs F.C. et al. Diffusion of Fe, Co, Nd, and Dy in R2(Fe1-xCox)14B, where R=Nd or Dy // Journal of Magnetism and Magnetic Materials. 2001. Vol. 233. P. L136–L141.
15. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie tseriya i ittriya na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Dу–Fе–Со–В [Influence of cerium and yttrium on magnetic properties and phase structure of material of system Nd–Dу–Fе–Со–В] // Metallovedenie i termicheskaya obrabotka metallov. 2005. №10. S. 25–29.
16. Kablov E.N., Piskorskij V.P., Valeev R.A., Davydova E.A. Vliyanie tseriya na temperaturnuyu stabilnost magnitov Nd–Dу–Fе–Со–В [Cerium influence on temperature stability of magnets Nd–Dу–Fе–Со–В] // Metally. 2014. №6. S. 51–53.
17. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Piskorskij V.P., Valeev R.A., Korolev D.V. Zavisimost svojstv spechennykh materialov sistemy Nd–Dу–Fе–Со–В ot tekhnologicheskikh parametrov [Dependence of properties of the sintered materials of system Nd–Dу–Fе–Со–В from technological parameters] // Aviatsionnye materialy i tekhnologii. 2015. №S2. S. 24–29. DOI: 10.18577/2071-9140-2015-0-S2-24-29.
18. Herbst J.F. R2Fe14B materials: intrinsic properties and technological properties and technological aspects // Rev. Modern Physics. 1991. V. 63. No. 6. P. 819–898.
19. Menushenkov V.P., Savchenko A.G. Termoobrabotka, mikrostruktura i koertsitivnaya sila spechennykh magnitov na osnove (Nd, Dу)–Fе–В [Heat treatment, microstructure and coercive force of the sintered magnets on basis (Nd, Dу)–Fе–В] // Materialovedenie i metallurgiya. Perspektivnye tekhnologii i oborudovanie: materialy seminara. M.: MGIU, 2003. S. 158–185.
20. Lileev A.S., Arinicheva O.A., Lukin A.A. i dr. Issledovanie magnitnykh svojstv i struk-tury magnitov tipa (Nd, Рr)–(Тb, Dу, Gd)–(Fе, Со, Аl, Сu, Rе)–В posle termicheskoj obrabotki [Research of magnetic properties and structure of magnets of type (Nd, Рr)–(Тb, Dу, Gd)–(Fе, Со, Аl, Сu, Rе)–В – after thermal processing] // Metallovedenie i termicheskaya obrabotka metallov. 2013. №2. S. 4–7.
21. Matsuura M., Goto R., Tezuka N., Sugimoto S. Influence of microstructural change of the interface between Nd2Fe14B and Nd–O phases on coercivity of Nd–Fe–B films by oxidation and subsequent low-temperature annealing // Journal of Physics: Conference Series. 2011. Vol. 266. P. 12–39.
22. Piskorskij V.P., Burkhanov G.S., Ospennikova O.G., Valeev R.A., Tereshina I.S., Davydova E.A. Vliyanie termicheskoj obrabotki na svojstva nanostrukturirovannykh magnitotverdykh materialov Рr–Dу–Fе–Со–В [Influence of thermal processing on properties of the nanostructured magnitotverdy materials Рr–Dу–Fе–Со–В] // Metally. 2010. №3. S. 84–91.
23. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
24. Turchenkov V.A., Baranov D.E., Gagarin M.V., Shishkin M.D. Metodicheskij podhod k provedeniju jekspertizy materialov [Methodical approach to carrying out examination of materials] // Aviacionnye materialy i tehnologii. 2012. №1. S. 47–53.
25. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and x-ray of the structural analysis for research of structural and phase condition of materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: August 6, 2018).
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Kablov E.N., Piskorskij V.P., Burkhanov G.S., Valeev R.A., Moiseeva N.S., Stepanova S.V., Petrakov A.F., Tereshina I.S., Repina M.V. Termostabilnye koltsevye magnity s radialnoj teksturoj na osnove Nd(Рr)–Dу–Fе–Со–В [Thermostable ring magnets with radial structure on the basis of Nd(Рr)–Dу–Fе–Со–В] // Fizika i khimiya obrabotki materialov. 2011. №3. S. 43–47.
4. Melnikov S.A., Piskorskij V.P., Belyaev I.V., Valeev R.A., Verklov M.M., Ivanov S.I., Ospennikova O.G., Parshin A.P. Temperaturnye zavisimosti magnitnykh svojstv spechennykh splavov Nd–Re–В, legirovannykh splavami RZM s perekhodnymi metallami [Temperature dependences of magnetic properties of sintered alloys Nd–Re–В, RZM alloyed by alloys with transition metals] // Perspektivnye materialy. 2011. №11. S. 201–207.
5. Piskorskij V.P., Burkhanov G.S., Ospennikova O.G., Valeev R.A., Tereshina I.S., Davydova E.A. Raschet temperaturnogo koeffitsienta induktsii nanostrukturirovannykh magnitotverdykh materialov Рr–Dу–Gd–Fе–Со–В metodom molekulyarnogo polya [Calculation of temperature coefficient of induction of the nanostructured magnitotverdy materials Рr–Dу–Gd–Fе–Со–В method of molecular field] // Metally. 2010. №1. S. 64–67.
6. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: August 6, 2018).
7. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Rezchikova I.I., Valeev R.A., Davydova E.A. Fazovyj sostav spechennyh materialov sistemy Рr–Dу–Fе–Со–В [Phase composition of the Рr–Dу–Fе–Со–В sintered materials] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 5–10. DOI: 10.18577/2071-9140-2015-0-S2-5-10.
8. Petrakov A.F., Piskorskij V.P., Burkhanov G.S., Repina M.V., Ivanov S.I. Osobennosti spekaniya magnitov Nd(Рr)–Dу–Fе–Со–В s vysokim soderzhaniem Co [Features of agglomeration of magnets of Nd(Рr)–Dу–Fе–Со–В with the high contents Co] // Metallovedenie i termicheskaya obrabotka metallov. 2012. №7. S. 3–9.
9. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie prazeodima na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Рr–Dу–Fе–Со–В [Influence prazeodima on magnetic properties and phase structure of material of system Nd–Рr–Dу–Fе–Со–В] // Metallovedenie i termicheskaya obrabotka metallov. 2005. №6 (600). S. 12–16.
10. Davydova E.A., Piskorskij V.P., Moiseeva N.S., Chabina E.B. Vliyanie temperatury i dlitelnosti spekaniya na strukturu i fazovyj sostav termostabilnykh magnitotverdykh materialov sistemy RZM–Fe–Co–B [Influence of temperature and длительности agglomeration on structure and phase structure thermostable magnitotverdy материалов systems RZM–Fe–Co–B] // Metally. 2015. №6. S. 47–51.
11. Chen Y., Liang J., Lin Q. et al. The ternary system neodymium–cobalt–boron // Journal Alloys Compd. 1999. Vol. 288. No. 1–2. P. 170–172.
12. Kablov E.N., Ospennikova O.G., Davydova E.A., Buzenkov A.V., Valeev R.A., Morgunov R.B., Piskorskij V.P. Vliyanie otzhiga splava Рr–Dу–Fе–Со–В na ego fazovyj sostav i svojstva spechennykh magnitov, izgotovlennykh iz nego [Influence of annealing of alloy Рr–Dу–Fе–Со–В on its phase structure and properties of the sintered magnets made of it] // Metally. 2018. №2. S. 28–32.
13. Davydova E.A. Fazovyj sostav i magnitnye svojstva magnitotverdykh materialov sistemy Rr–Du(Gd)–Fe–So–B: avtoref. dis. ... kand. tekhn. Nauk [Phase structure and magnetic properties of magneto hard materials of Rr–Du system (Gd)–Fe–So–B: thesis, cand. Sc. (Tech.)]. M., 2012. 25 s.
14. Cook B.A., Harringa J.L., Laabs F.C. et al. Diffusion of Fe, Co, Nd, and Dy in R2(Fe1-xCox)14B, where R=Nd or Dy // Journal of Magnetism and Magnetic Materials. 2001. Vol. 233. P. L136–L141.
15. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie tseriya i ittriya na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Dу–Fе–Со–В [Influence of cerium and yttrium on magnetic properties and phase structure of material of system Nd–Dу–Fе–Со–В] // Metallovedenie i termicheskaya obrabotka metallov. 2005. №10. S. 25–29.
16. Kablov E.N., Piskorskij V.P., Valeev R.A., Davydova E.A. Vliyanie tseriya na temperaturnuyu stabilnost magnitov Nd–Dу–Fе–Со–В [Cerium influence on temperature stability of magnets Nd–Dу–Fе–Со–В] // Metally. 2014. №6. S. 51–53.
17. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Piskorskij V.P., Valeev R.A., Korolev D.V. Zavisimost svojstv spechennykh materialov sistemy Nd–Dу–Fе–Со–В ot tekhnologicheskikh parametrov [Dependence of properties of the sintered materials of system Nd–Dу–Fе–Со–В from technological parameters] // Aviatsionnye materialy i tekhnologii. 2015. №S2. S. 24–29. DOI: 10.18577/2071-9140-2015-0-S2-24-29.
18. Herbst J.F. R2Fe14B materials: intrinsic properties and technological properties and technological aspects // Rev. Modern Physics. 1991. V. 63. No. 6. P. 819–898.
19. Menushenkov V.P., Savchenko A.G. Termoobrabotka, mikrostruktura i koertsitivnaya sila spechennykh magnitov na osnove (Nd, Dу)–Fе–В [Heat treatment, microstructure and coercive force of the sintered magnets on basis (Nd, Dу)–Fе–В] // Materialovedenie i metallurgiya. Perspektivnye tekhnologii i oborudovanie: materialy seminara. M.: MGIU, 2003. S. 158–185.
20. Lileev A.S., Arinicheva O.A., Lukin A.A. i dr. Issledovanie magnitnykh svojstv i struk-tury magnitov tipa (Nd, Рr)–(Тb, Dу, Gd)–(Fе, Со, Аl, Сu, Rе)–В posle termicheskoj obrabotki [Research of magnetic properties and structure of magnets of type (Nd, Рr)–(Тb, Dу, Gd)–(Fе, Со, Аl, Сu, Rе)–В – after thermal processing] // Metallovedenie i termicheskaya obrabotka metallov. 2013. №2. S. 4–7.
21. Matsuura M., Goto R., Tezuka N., Sugimoto S. Influence of microstructural change of the interface between Nd2Fe14B and Nd–O phases on coercivity of Nd–Fe–B films by oxidation and subsequent low-temperature annealing // Journal of Physics: Conference Series. 2011. Vol. 266. P. 12–39.
22. Piskorskij V.P., Burkhanov G.S., Ospennikova O.G., Valeev R.A., Tereshina I.S., Davydova E.A. Vliyanie termicheskoj obrabotki na svojstva nanostrukturirovannykh magnitotverdykh materialov Рr–Dу–Fе–Со–В [Influence of thermal processing on properties of the nanostructured magnitotverdy materials Рr–Dу–Fе–Со–В] // Metally. 2010. №3. S. 84–91.
23. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
24. Turchenkov V.A., Baranov D.E., Gagarin M.V., Shishkin M.D. Metodicheskij podhod k provedeniju jekspertizy materialov [Methodical approach to carrying out examination of materials] // Aviacionnye materialy i tehnologii. 2012. №1. S. 47–53.
25. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and x-ray of the structural analysis for research of structural and phase condition of materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: August 6, 2018).
3.
№1-2, 2018
УДК 620.197
Venediktova M.A.1, Krasnov L.L.1, Kirina Z.V.1
SOME ASPECTS OF APPLICATION OF FIREPROOF COVERINGS (review)
The current state of problem and perspective of production of fireproof coverings is considered. Major factors coverings of foaming type influencing fireproof efficiency are analyzed. Main types of fireproof coverings of domestic and foreign production, and world tendencies are given to developments of this direction. Aspects of creation of compounding of fireproof compositions are mentioned. Characteristics of perspective fireproof coverings intended for protection against overheat of constructive elements of aviation engineering developed by VIAM Federal State Unitary Enterprise are provided.
Keywords: fireproof pastes, fire retardant, intumescent fire protection coatings, fire protective material, thermal protection, foaming.
Reference List
1. Jamshhikova S.A. Povyshenie ognezashhitnoj sposobnosti vspuchivajushhihsja pokrytij dlja obektov neftegazovoj otrasli: dis. … kand. tehn. Nauk [Increase fire protection ability of swelling-up coverings for objects of the oil and gas industry: thesis cand. Sc. (Tech.)]. Ufa, 2009. 171 s.
2. Gabdulin R.Sh. Jeffektivnye sposoby ognezashhity stroitelnyh konstrukcij [Effective ways fire protection of construction designs] // Bezopasnost. 2011. №1. S. 48–49.
3. Krasheninnikova M.V. Ognezashhitnye vspuchivajushhiesja materialy na osnove organorastvorimyh plenkoobrazovatelej [Fire protection swelling-up materials on the basis of solvent borne film former] // Lakokrasochnye materialy. 2006. №12. S. 14–16.
4. Kucherenko V.A. Posobie po opredeleniju predelov ognestojkosti konstrukcii [Grant by definition of limits of fire resistance of design]. M.: CNIIISK, 1985. 65 s.
5. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
6. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
7. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: December 11, 2017).
8. Pavlovich A.V., Vladenkov V.V., Izjumskij V.N., Kilchickaja S.L. Ognezashhitnye vspuchivajushhiesja pokrytija [Fire protection swelling-up coverings] // Lakokrasochnaja promyshlennost. 2012. №5. S. 22–27.
9. Polimernye materialy ponizhennoj gorjuchesti: materialy IV Mezhdunar. konf. [Polymeric materials of the lowered combustibility: materials IV of the International conference] / VOLG GTU. Volgograd, 2000. 196 s.
10. Eliseev O.A., Naumov I.S., Smirnov D.N., Bryk Ja.A. Reziny, germetiki i ogne-teplozashhitnye materialy [Rubbers, sealants, fireproof and heat-shielding materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 437–451. DOI: 10.18577/2071-9140-2017-0-S-437-451.
11. Nefedov N.I., Semenova L.V., Kuznecova V.A., Vereninova N.P. Lakokrasochnye pokrytiya dlya zashhity metallicheskih i polimernyh kompozicionnyh materialov ot stareniya, korrozii i biopovrezhdeniya [Paint coatings for protection of metallic and polymer composite materials against aging, corrosion and biodeterioration] // Aviacionnye materialy i tehnologii. 2017. №S. S. 393–404. DOI: 10.18577/2071-9140-2017-0-S-393-404.
12. Semenova L.V., Malova N.E., Kuznetsova V.A., Pozhoga A.A. Lakokrasochnye materialy i pokrytiya [Paint and varnish materials and coatings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 315–327.
13. Parahin I.V., Tumanov A.S. Vlijanie kislorodsoderzhashhih soedinenij bora na svojstva teplozashhitnyh pokrytij [An influence of oxygen-bearing boron compounds on properties of thermal barrier coatings] // Aviacionnye materialy i tehnologii. 2014. №2. S. 40–43. DOI: DOI: 10.18577/2071-9140-2014-0-2-40-43.
14. Krasnov L.L., Kirina Z.V. Materialy, obespechivajushhie nadezhnost raboty konstruktivnyh jelementov v uslovijah pozhara [The materials providing reliability of work of constructive elements in the conditions of fire] // Vse materialy. Jenciklopedicheskij spravochnik. 2012. №10. S. 48–52.
15. Kablov E.N. Materialy novogo pokolenija [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
16. Aseeva R.M., Zaikov G.E. Gorenie polimernyh materialov [Burning of polymeric materials]. M.: Nauka, 193 s.
17. Jakovlev A.D., Jakovlev S.A. Lakokrasochnye pokrytija funkcionalnogo naznachenija [Paint coatings of functional purpose]. SPb.: Himizdat, 2016. 272.
18. Rojtman V.M., Gabdulin R.Sh., Shherbina S.V. Mehanizm formirovanija ognezashhitnogo jeffekta vspuchivajushhihsja pokrytij zhelezobetonnyh konstrukcij pri ih nagreve [The mechanism of forming fire protection effect of swelling-up coverings of steel concrete designs at their heating] // Nauka i bezopasnost. 2012. №4. S. 40–50.
19. High-temperature-resistant heat insulation coating: pat. 103881426 CN; publ. 25.06.14.
20. Reinforcement system for mastic intumescent fire protection coatings: pat. 5580648 US; publ. 03.12.96.
21. Fire-resistant coating material ADINA: pat. 2012115595 WO; publ. 30.08.12.
22. Fire retardant intumescent coating: pat. 7217753 US; publ. 12.05.07.
23. Low density, light weight intumescent coating: pat. 6096812 US; publ. 01.08.00.
24. Intumescent fireproof coating comprising a phosphorous/nitrogen-fire retardant and phosphinic acid salt: pat. 1627896 DK; publ. 30.06.08.
25. Fire protection composition, methods, and articles: pat. 2011023748 US; publ. 03.02.11.
26. Endothermic fire protective material: pat. 0281226 EP; publ. 07.09.88.
27. Fire, heat and backdraft protection shield for firefighters: pat. 6048805 US; publ. 11.04.20.
28. Ognezashhitnoe pokrytie: pat. 2265631 Ros. Federacija; zajavl [Fire protection cover: pat. 2265631 Rus. Federation]. 10.06.20; opubl. 10.12.05, Bjul. №4. 4 s.
29. Sloistoe vspuchivajushheesja ognezashhitnoe pokrytie: pat. 2103295 Ros. Federacija [Layered swelling-up fire protection covering: pat. 103295 Rus. Federation]; opubl. 27.01.98, Bjul. №4. 6 s.
30. Sposob poluchenija ognezashhitnoj vspuchivajushhejsja kompozicii: pat. 2492200 Ros. Federacija [Way of receiving fire protection swelling-up composition: pat. 2492200 Rus. Federation]; zajavl. 08.04.11; opubl. 10.09.13, Bjul. №5. 7 s.
31. Sostav kraski ognezashhitnoj atmosferostojkoj: pat. 2313548 Ros. Federacija [Composition of paint of the fire protection weatherproof: pat. 2313548 Rus. Federation]; zajavl. 12.09.06; opubl. 27.12.07, Bjul. №4. 4 s.
32. Ognezashhitnyj vpuchivajushhijsja sostav: pat. 2317274 Ros. Federacija [Fire protection swelling-up structure: pat. 2317274 Rus. Federation]; zajavl. 31.10.05; opubl. 20.02.08, Bjul. №3. 8 s.
33. Ognezashhitnaja vspuchivajushhajasja kraska: pat. 2224775 Ros. Federacija [Fire protection swelling-up paint: pat. 2224775 Rus. Federation]; zajavl. 17.04.03; opubl. 20.02.04, Bjul. №4. 5 s.
34. Ognezashhitnaja vspuchivajushhajasja jemal: pat. 2177973 Ros. Federacija [Fire protection swelling-up enamel: pat. 2177973 Rus. Federation]; zajavl. 13.07.99; opubl. 10.01.02, Bjul. №4. 5 s.
35. Kompanija Kron construction [Company Kron construction]: [ofic. sajt]. Available at: http://www.kroncons.ru (accessed: December 11, 2017).
36. Kompanija OOO «Palitra Rusi» [Palitra Rusi company Ltd]: [ofic. sajt]. Available at: http://www.palitra.ru (accessed: December 11, 2017).
37. AO NPO «Unihimtek» [JSC NPO «Unihimtek»]: [ofic. sajt]. Available at: http://www.ograx.ru (accessed: December 11, 2017).
38. AO «NPK «Korrzashhita» [JSC «NPK «Korrzashhita»]: [ofic. sajt]. Available at: http://www.korrzashita.ru (accessed: December 11, 2017).
39. OOO «Kroz» [«Kroz» Ltd]: [ofic. sajt]. Available at: http://www.cros.ru (accessed: December 11, 2017).
40. OOO «Jaroslavskij zavod lakokrasochnyh materialov» [«Jaroslavskij zavod lakokrasochnyh materialov» Ltd]: [ofic. sajt]. Available at: http://www.yarzk.ru (accessed: December 11, 2017).
2. Gabdulin R.Sh. Jeffektivnye sposoby ognezashhity stroitelnyh konstrukcij [Effective ways fire protection of construction designs] // Bezopasnost. 2011. №1. S. 48–49.
3. Krasheninnikova M.V. Ognezashhitnye vspuchivajushhiesja materialy na osnove organorastvorimyh plenkoobrazovatelej [Fire protection swelling-up materials on the basis of solvent borne film former] // Lakokrasochnye materialy. 2006. №12. S. 14–16.
4. Kucherenko V.A. Posobie po opredeleniju predelov ognestojkosti konstrukcii [Grant by definition of limits of fire resistance of design]. M.: CNIIISK, 1985. 65 s.
5. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
6. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
7. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: December 11, 2017).
8. Pavlovich A.V., Vladenkov V.V., Izjumskij V.N., Kilchickaja S.L. Ognezashhitnye vspuchivajushhiesja pokrytija [Fire protection swelling-up coverings] // Lakokrasochnaja promyshlennost. 2012. №5. S. 22–27.
9. Polimernye materialy ponizhennoj gorjuchesti: materialy IV Mezhdunar. konf. [Polymeric materials of the lowered combustibility: materials IV of the International conference] / VOLG GTU. Volgograd, 2000. 196 s.
10. Eliseev O.A., Naumov I.S., Smirnov D.N., Bryk Ja.A. Reziny, germetiki i ogne-teplozashhitnye materialy [Rubbers, sealants, fireproof and heat-shielding materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 437–451. DOI: 10.18577/2071-9140-2017-0-S-437-451.
11. Nefedov N.I., Semenova L.V., Kuznecova V.A., Vereninova N.P. Lakokrasochnye pokrytiya dlya zashhity metallicheskih i polimernyh kompozicionnyh materialov ot stareniya, korrozii i biopovrezhdeniya [Paint coatings for protection of metallic and polymer composite materials against aging, corrosion and biodeterioration] // Aviacionnye materialy i tehnologii. 2017. №S. S. 393–404. DOI: 10.18577/2071-9140-2017-0-S-393-404.
12. Semenova L.V., Malova N.E., Kuznetsova V.A., Pozhoga A.A. Lakokrasochnye materialy i pokrytiya [Paint and varnish materials and coatings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 315–327.
13. Parahin I.V., Tumanov A.S. Vlijanie kislorodsoderzhashhih soedinenij bora na svojstva teplozashhitnyh pokrytij [An influence of oxygen-bearing boron compounds on properties of thermal barrier coatings] // Aviacionnye materialy i tehnologii. 2014. №2. S. 40–43. DOI: DOI: 10.18577/2071-9140-2014-0-2-40-43.
14. Krasnov L.L., Kirina Z.V. Materialy, obespechivajushhie nadezhnost raboty konstruktivnyh jelementov v uslovijah pozhara [The materials providing reliability of work of constructive elements in the conditions of fire] // Vse materialy. Jenciklopedicheskij spravochnik. 2012. №10. S. 48–52.
15. Kablov E.N. Materialy novogo pokolenija [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
16. Aseeva R.M., Zaikov G.E. Gorenie polimernyh materialov [Burning of polymeric materials]. M.: Nauka, 193 s.
17. Jakovlev A.D., Jakovlev S.A. Lakokrasochnye pokrytija funkcionalnogo naznachenija [Paint coatings of functional purpose]. SPb.: Himizdat, 2016. 272.
18. Rojtman V.M., Gabdulin R.Sh., Shherbina S.V. Mehanizm formirovanija ognezashhitnogo jeffekta vspuchivajushhihsja pokrytij zhelezobetonnyh konstrukcij pri ih nagreve [The mechanism of forming fire protection effect of swelling-up coverings of steel concrete designs at their heating] // Nauka i bezopasnost. 2012. №4. S. 40–50.
19. High-temperature-resistant heat insulation coating: pat. 103881426 CN; publ. 25.06.14.
20. Reinforcement system for mastic intumescent fire protection coatings: pat. 5580648 US; publ. 03.12.96.
21. Fire-resistant coating material ADINA: pat. 2012115595 WO; publ. 30.08.12.
22. Fire retardant intumescent coating: pat. 7217753 US; publ. 12.05.07.
23. Low density, light weight intumescent coating: pat. 6096812 US; publ. 01.08.00.
24. Intumescent fireproof coating comprising a phosphorous/nitrogen-fire retardant and phosphinic acid salt: pat. 1627896 DK; publ. 30.06.08.
25. Fire protection composition, methods, and articles: pat. 2011023748 US; publ. 03.02.11.
26. Endothermic fire protective material: pat. 0281226 EP; publ. 07.09.88.
27. Fire, heat and backdraft protection shield for firefighters: pat. 6048805 US; publ. 11.04.20.
28. Ognezashhitnoe pokrytie: pat. 2265631 Ros. Federacija; zajavl [Fire protection cover: pat. 2265631 Rus. Federation]. 10.06.20; opubl. 10.12.05, Bjul. №4. 4 s.
29. Sloistoe vspuchivajushheesja ognezashhitnoe pokrytie: pat. 2103295 Ros. Federacija [Layered swelling-up fire protection covering: pat. 103295 Rus. Federation]; opubl. 27.01.98, Bjul. №4. 6 s.
30. Sposob poluchenija ognezashhitnoj vspuchivajushhejsja kompozicii: pat. 2492200 Ros. Federacija [Way of receiving fire protection swelling-up composition: pat. 2492200 Rus. Federation]; zajavl. 08.04.11; opubl. 10.09.13, Bjul. №5. 7 s.
31. Sostav kraski ognezashhitnoj atmosferostojkoj: pat. 2313548 Ros. Federacija [Composition of paint of the fire protection weatherproof: pat. 2313548 Rus. Federation]; zajavl. 12.09.06; opubl. 27.12.07, Bjul. №4. 4 s.
32. Ognezashhitnyj vpuchivajushhijsja sostav: pat. 2317274 Ros. Federacija [Fire protection swelling-up structure: pat. 2317274 Rus. Federation]; zajavl. 31.10.05; opubl. 20.02.08, Bjul. №3. 8 s.
33. Ognezashhitnaja vspuchivajushhajasja kraska: pat. 2224775 Ros. Federacija [Fire protection swelling-up paint: pat. 2224775 Rus. Federation]; zajavl. 17.04.03; opubl. 20.02.04, Bjul. №4. 5 s.
34. Ognezashhitnaja vspuchivajushhajasja jemal: pat. 2177973 Ros. Federacija [Fire protection swelling-up enamel: pat. 2177973 Rus. Federation]; zajavl. 13.07.99; opubl. 10.01.02, Bjul. №4. 5 s.
35. Kompanija Kron construction [Company Kron construction]: [ofic. sajt]. Available at: http://www.kroncons.ru (accessed: December 11, 2017).
36. Kompanija OOO «Palitra Rusi» [Palitra Rusi company Ltd]: [ofic. sajt]. Available at: http://www.palitra.ru (accessed: December 11, 2017).
37. AO NPO «Unihimtek» [JSC NPO «Unihimtek»]: [ofic. sajt]. Available at: http://www.ograx.ru (accessed: December 11, 2017).
38. AO «NPK «Korrzashhita» [JSC «NPK «Korrzashhita»]: [ofic. sajt]. Available at: http://www.korrzashita.ru (accessed: December 11, 2017).
39. OOO «Kroz» [«Kroz» Ltd]: [ofic. sajt]. Available at: http://www.cros.ru (accessed: December 11, 2017).
40. OOO «Jaroslavskij zavod lakokrasochnyh materialov» [«Jaroslavskij zavod lakokrasochnyh materialov» Ltd]: [ofic. sajt]. Available at: http://www.yarzk.ru (accessed: December 11, 2017).
4.
№5, 2016
УДК 621.186.4
Butakov V.V.1
Features of receiving flexible heatinsulating material
The article considers the process of production a flexible insulation material method of forming from water slurries. Hypothesized the relationship parameters of the material structure and its resistance to stretching and bending resistance. A new method of homogenization of water slurry is suggested. The article compares the proposed method with the traditional method of homogenization using a blade mixer. This work has allowed to confirm the hypothesis a more flexible material with the increase of average length of the fibers in the material.
Keywords: heat insulation, flexible fibrous material, minimum bend radius
Reference List
1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
2. Dospekhi dlya Burana. Materialy i tekhnologii VIAM dlya MKS «Energiya–Buran» / pod obshch. red. E.N. Kablova [Armor for the Buran. Materials and VIAM technologies for ISS of «Energiya–Buran»]. M.: Nauka i zhizn, 2013. 128 s.
3. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
4. Ivahnenko Yu.A., Babashov V.G., Zimichev A.M., Tinyakova E.V. Vysokotemperaturnye teploizolyacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] // Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
5. Grashchenkov D.V., Shchetanov B.V., Tinyakova E.V., Shcheglova T.M. O vozmozhnosti ispolzovaniya kvartsevogo volokna v kachestve svyazuyushchego pri poluchenii legkovesnogo teplozashchitnogo materiala na osnove volokon Al2O3 [About possibility of use of quartz fiber as lightweight heat-protective material binding at receiving on the basis of Al2O3 fibers] // Aviacionnye materialy i tehnologii. 2011. №4. S. 8‒14.
6. Barbotko S.L. Pozharobezopasnost aviacionnyh materialov [Fire safety of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
7. Zimichev A.M., Soloveva E.P. Volokno dioksida tsirkoniya dlya vysokotemperaturnogo primeneniya (obzor) [Zirconia fiber for high temperature application (review)] // Aviacionnye materialy i tehnologii. 2014. №3. S. 55–61. DOI: 10.18577/2071-9140-2014-03-55-61.
8. Babashov V.G., Varrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizolyacionnyj material [High-temperature flexible fibrous insulation material] // Trudy VIAM :elektron. nauch.-tehnich. zhurn. 2015. №1. St. 03. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2015-0-1-3-3.
9. Varrik N.M. Termostojkie volokna i teplozvukoizolyacionnye ognezashhitnye materialy [Heat-resistant fibers and heat and sound insulating fireproof materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 07. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2014-0-6-7-7.
10. Lugovoy A.A., Babashov V.G., Karpov Yu.V. Temperaturoprovodnost gradientnogo teploizolyatsionnogo materiala [The thermal diffusivity of the gradientthermal insulation material] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 02. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2014-0-2-2-2.
11. Ivakhnenko Yu.A., Varrik N.M. Materialy dlya vysokotemperaturnykh uplotneniy (obzor) [Materials for high-temperature sealants (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №6. St. 02. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2015-0-6-2-2.
12. Ivakhnenko Yu.A., Babashov V.G., Basargin O.V., Butakov V.V. Model povedeniya voloknistogo materiala pri izgibe [Model of behavior of fibrous material at bend] // Vse materialy. Enciklopedicheskiy spravochnik. 2012. №12. S. 12–15.
13. Babashov V.G., Butakov V.V., Basargin O.V., Nikitina V.Yu., Shcheglova T.M. Otsenka anizotropii materiala VTI-16 putem sopostavleniya prochnosti pri rastyazhenii obrazcov, vyrezannyh v prodolnom i poperechnom napravlenii [The estimation of VTI-16 anisotropy by comparison tensile strength of the samples, cut out in the longitudinal and cross direction] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №7. St. 09. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2015-0-7-9-9.
14. Kolyshev S.G., Basargin O.V., Butakov V.V. Eksperimenty po opredeleniyu prochnosti pri rastyazhenii obraztsov iz legkovesnykh gibkikh voloknistykh materialov [Experiments by determination of durability at stretching of samples from lightweight flexible fibrous materials] // Vse materialy. Entsiklopedicheskiy spravochnik. 2014. №5. S. 8–11.
15. Duka A.V. Razrabotka tekhnologii usovershenstvovanykh kvartsevykh TZM na osnove razvitiya printsipov strukturoobrazovaniya voloknistykh pulp: avtoref. dis. kand. tekhn. nauk [Development of technology of advanced quartz TZM on the basis of development of principles of structurization of fibrous pulps: thesis of Cand. Tech. Sci.]. M.: VIAM, 1989. 22 s.
16. Sposob polucheniya voloknistogo teploizolyatsionnogo materiala: pat. 2553870 Ros. Federatsiya [Way of receiving fibrous heatinsulating material: pat. 2553870 Rus. Federation]; opubl. 25.05.15.
2. Dospekhi dlya Burana. Materialy i tekhnologii VIAM dlya MKS «Energiya–Buran» / pod obshch. red. E.N. Kablova [Armor for the Buran. Materials and VIAM technologies for ISS of «Energiya–Buran»]. M.: Nauka i zhizn, 2013. 128 s.
3. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
4. Ivahnenko Yu.A., Babashov V.G., Zimichev A.M., Tinyakova E.V. Vysokotemperaturnye teploizolyacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] // Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
5. Grashchenkov D.V., Shchetanov B.V., Tinyakova E.V., Shcheglova T.M. O vozmozhnosti ispolzovaniya kvartsevogo volokna v kachestve svyazuyushchego pri poluchenii legkovesnogo teplozashchitnogo materiala na osnove volokon Al2O3 [About possibility of use of quartz fiber as lightweight heat-protective material binding at receiving on the basis of Al2O3 fibers] // Aviacionnye materialy i tehnologii. 2011. №4. S. 8‒14.
6. Barbotko S.L. Pozharobezopasnost aviacionnyh materialov [Fire safety of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
7. Zimichev A.M., Soloveva E.P. Volokno dioksida tsirkoniya dlya vysokotemperaturnogo primeneniya (obzor) [Zirconia fiber for high temperature application (review)] // Aviacionnye materialy i tehnologii. 2014. №3. S. 55–61. DOI: 10.18577/2071-9140-2014-03-55-61.
8. Babashov V.G., Varrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizolyacionnyj material [High-temperature flexible fibrous insulation material] // Trudy VIAM :elektron. nauch.-tehnich. zhurn. 2015. №1. St. 03. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2015-0-1-3-3.
9. Varrik N.M. Termostojkie volokna i teplozvukoizolyacionnye ognezashhitnye materialy [Heat-resistant fibers and heat and sound insulating fireproof materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 07. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2014-0-6-7-7.
10. Lugovoy A.A., Babashov V.G., Karpov Yu.V. Temperaturoprovodnost gradientnogo teploizolyatsionnogo materiala [The thermal diffusivity of the gradientthermal insulation material] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 02. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2014-0-2-2-2.
11. Ivakhnenko Yu.A., Varrik N.M. Materialy dlya vysokotemperaturnykh uplotneniy (obzor) [Materials for high-temperature sealants (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №6. St. 02. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2015-0-6-2-2.
12. Ivakhnenko Yu.A., Babashov V.G., Basargin O.V., Butakov V.V. Model povedeniya voloknistogo materiala pri izgibe [Model of behavior of fibrous material at bend] // Vse materialy. Enciklopedicheskiy spravochnik. 2012. №12. S. 12–15.
13. Babashov V.G., Butakov V.V., Basargin O.V., Nikitina V.Yu., Shcheglova T.M. Otsenka anizotropii materiala VTI-16 putem sopostavleniya prochnosti pri rastyazhenii obrazcov, vyrezannyh v prodolnom i poperechnom napravlenii [The estimation of VTI-16 anisotropy by comparison tensile strength of the samples, cut out in the longitudinal and cross direction] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №7. St. 09. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2015-0-7-9-9.
14. Kolyshev S.G., Basargin O.V., Butakov V.V. Eksperimenty po opredeleniyu prochnosti pri rastyazhenii obraztsov iz legkovesnykh gibkikh voloknistykh materialov [Experiments by determination of durability at stretching of samples from lightweight flexible fibrous materials] // Vse materialy. Entsiklopedicheskiy spravochnik. 2014. №5. S. 8–11.
15. Duka A.V. Razrabotka tekhnologii usovershenstvovanykh kvartsevykh TZM na osnove razvitiya printsipov strukturoobrazovaniya voloknistykh pulp: avtoref. dis. kand. tekhn. nauk [Development of technology of advanced quartz TZM on the basis of development of principles of structurization of fibrous pulps: thesis of Cand. Tech. Sci.]. M.: VIAM, 1989. 22 s.
16. Sposob polucheniya voloknistogo teploizolyatsionnogo materiala: pat. 2553870 Ros. Federatsiya [Way of receiving fibrous heatinsulating material: pat. 2553870 Rus. Federation]; opubl. 25.05.15.
5.
№4, 2016
УДК 621.792.053
Lukina N.Ph.1, I.A. Sharova1
Properties and assignment of being self-glued materials aviation assignment
Properties of being self-glued materials on the different bearing substrates developed by VIAM Federal State Unitary Enterprise are presented. It is shown that these materials are intended for operational repair of the revealed defects of exterior surface of glider and elements of wing of aviation engineering, including in field conditions.
Work is executed within implementation of the complex scientific direction 15.1. Multifunction adhesive systems. («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: the sticky tape, being self-glued material, adhesive with constant stickiness, aluminum foil, fabric basis, durability when flaking
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Petrova A.P., Donskoy A.A. Kleyashchie materialy. Germetiki [Gluing materials. Hermetics]: spravochnik SPb.: Professional, 2008. 559 s.
3. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012.
520 s.
4. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
6. Petrova A.P., Lukina N.F., Dementeva L.A. i dr. Klei dlya aviatsionnoy tekhniki [Glues for aviation engineering] // RZhKh. 2010. T. LIV. №1. S. 46–52.
7. Kablov E.N., Minakov V.T., Anikhovskaya L.I. Klei i materialy na ikh osnove dlya remonta konstruktsiy aviatsionnoy tekhniki [Glues and materials on their basis for repair of designs of aviation engineering] // Aviatsionnye materialy i tekhnologii. 2002. №1.
S. 61–65.
8. Anikhovskaya L.I., Minakov V.T. Klei i kleevye prepregi dlya perspektivnykh izdeliy aviakosmicheskoy tekhniki [Glues and glue prepregs for perspective products of aerospace equipment] // Aviatsionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubileynyy nauch.-tekhnich. sb. M.: MISiS–VIAM, 2002. S. 315–326.
9. Lukina N.F., Dementeva L.A., Petrova A.P., Tyumeneva T.Yu. Svoystva kleev i kleyashchikh materialov dlya izdeliy aviatsionnoy tekhniki [Properties of glues and gluing materials for products of aviation engineering] // Klei. Germetiki. Tekhnologii. 2009. №1. S. 14–24.
10. Tyumeneva T.Yu., Zhadova N.S., Lukina N.F. Razrabotki FGUP «VIAM» v oblasti kleev rezinotekhnicheskogo naznacheniya i samokleyashchikhsya materialov [Development of VIAM Federal State Unitary Enterprise in the field of glues of industrial rubber assign-ment and being self-glued materials] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №7. St. 04. URL: http://www.viam-works.ru (data obrashcheniya: 25.05.2016). DOI: 10.18577/2307-6046-2014-0-7-4-4.
11. Lukina N.F., Chursova L.V. Laboratoriya «Klei i kleevye prepregi» – dostizheniya i perspektivy [Laboratory «Glues and glue prepregs» – achievements and perspectives] // Kleyashchie materialy aviatsionnogo naznacheniya: sb. dokl. konf. M.: VIAM, 2013. S. 1–5.
12. Zhadova N.S., Tyumeneva T.Yu. Samokleyashchiesya materialy dlya operativnogo remonta tekhniki [Being self-glued materials for operational repair of equipment] // Klei. Germetiki. Tekhnologii. 2008. №12. S. 6–8.
13. Zhadova N.S., Lukina N.F., Tyumeneva T.Yu. Samokleyashchiesya materialy dlya vremennogo operativnogo remonta vneshney poverkhnosti izdeliy aviatsionnoy tekhniki [Being self-glued materials for temporary operational repair of exterior surface of products of aviation engineering] // Klei. Germetiki. Tekhnologii. 2012. №6. S. 2–4.
14. Sharova I.A., Zhadova N.S., Lukina N.F. Kleyashchie materialy i tekhnologii dlya vremennogo operativnogo remonta sotovykh agregatov iz polimernykh kompozitsionnykh materialov [Gluing materials and technologies for temporary operational repair of cellular units from polymeric composite materials] // Klei. Germetiki. Tekhnologii. 2012. №5.
S. 36–39.
15. Avdonina I.A., Lukina N.F. Bystrootverzhdayushchiysya epoksidnyy kley VK-93 kho-lodnogo otverzhdeniya [Fast-curing epoxy VK-93 glue of cold curing] // Klei. Germetiki. Tekhnologii. 2009. №3. S. 14–17.
16. Sharova I.A., Lukina N.F. Zazorozapolnyayushchiy epoksidnyy kley kholodnogo otverzhdeniya [Gap filling epoxy glue of cold curing] // Klei. Germetiki. Tekhnologii. 2012. №3. S. 10–12.
17. Zhadova N.S., Tyumeneva T.Yu., Sharova I.A., Lukina N.F. Perspektivnye tekhnologii dlya vremennogo operativnogo remonta aviatsionnoy tekhniki [Perspective technologies for temporary operational repair of aviation engineering] // Aviatsionnye materialy i tekhnologii. 2013. №2. S. 67–70. DOI: 10.18577/2071-9140-2013-0-2-67-70.
18. Sharova I.A., Lukina N.F., Aleksashin V.M., Antyufeeva N.V. Vliyanie sostava na kineticheskie i prochnostnye svoystva bystrootverzhdayushchikhsya epoksidnykh kleevykh kompozitsiy [Influence of structure on kinetic and strength properties fast-curing epoxy glue compositions] // Klei. Germetiki. Tekhnologii. 2015. №2. S. 1–5.
2. Petrova A.P., Donskoy A.A. Kleyashchie materialy. Germetiki [Gluing materials. Hermetics]: spravochnik SPb.: Professional, 2008. 559 s.
3. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012.
520 s.
4. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
6. Petrova A.P., Lukina N.F., Dementeva L.A. i dr. Klei dlya aviatsionnoy tekhniki [Glues for aviation engineering] // RZhKh. 2010. T. LIV. №1. S. 46–52.
7. Kablov E.N., Minakov V.T., Anikhovskaya L.I. Klei i materialy na ikh osnove dlya remonta konstruktsiy aviatsionnoy tekhniki [Glues and materials on their basis for repair of designs of aviation engineering] // Aviatsionnye materialy i tekhnologii. 2002. №1.
S. 61–65.
8. Anikhovskaya L.I., Minakov V.T. Klei i kleevye prepregi dlya perspektivnykh izdeliy aviakosmicheskoy tekhniki [Glues and glue prepregs for perspective products of aerospace equipment] // Aviatsionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubileynyy nauch.-tekhnich. sb. M.: MISiS–VIAM, 2002. S. 315–326.
9. Lukina N.F., Dementeva L.A., Petrova A.P., Tyumeneva T.Yu. Svoystva kleev i kleyashchikh materialov dlya izdeliy aviatsionnoy tekhniki [Properties of glues and gluing materials for products of aviation engineering] // Klei. Germetiki. Tekhnologii. 2009. №1. S. 14–24.
10. Tyumeneva T.Yu., Zhadova N.S., Lukina N.F. Razrabotki FGUP «VIAM» v oblasti kleev rezinotekhnicheskogo naznacheniya i samokleyashchikhsya materialov [Development of VIAM Federal State Unitary Enterprise in the field of glues of industrial rubber assign-ment and being self-glued materials] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №7. St. 04. URL: http://www.viam-works.ru (data obrashcheniya: 25.05.2016). DOI: 10.18577/2307-6046-2014-0-7-4-4.
11. Lukina N.F., Chursova L.V. Laboratoriya «Klei i kleevye prepregi» – dostizheniya i perspektivy [Laboratory «Glues and glue prepregs» – achievements and perspectives] // Kleyashchie materialy aviatsionnogo naznacheniya: sb. dokl. konf. M.: VIAM, 2013. S. 1–5.
12. Zhadova N.S., Tyumeneva T.Yu. Samokleyashchiesya materialy dlya operativnogo remonta tekhniki [Being self-glued materials for operational repair of equipment] // Klei. Germetiki. Tekhnologii. 2008. №12. S. 6–8.
13. Zhadova N.S., Lukina N.F., Tyumeneva T.Yu. Samokleyashchiesya materialy dlya vremennogo operativnogo remonta vneshney poverkhnosti izdeliy aviatsionnoy tekhniki [Being self-glued materials for temporary operational repair of exterior surface of products of aviation engineering] // Klei. Germetiki. Tekhnologii. 2012. №6. S. 2–4.
14. Sharova I.A., Zhadova N.S., Lukina N.F. Kleyashchie materialy i tekhnologii dlya vremennogo operativnogo remonta sotovykh agregatov iz polimernykh kompozitsionnykh materialov [Gluing materials and technologies for temporary operational repair of cellular units from polymeric composite materials] // Klei. Germetiki. Tekhnologii. 2012. №5.
S. 36–39.
15. Avdonina I.A., Lukina N.F. Bystrootverzhdayushchiysya epoksidnyy kley VK-93 kho-lodnogo otverzhdeniya [Fast-curing epoxy VK-93 glue of cold curing] // Klei. Germetiki. Tekhnologii. 2009. №3. S. 14–17.
16. Sharova I.A., Lukina N.F. Zazorozapolnyayushchiy epoksidnyy kley kholodnogo otverzhdeniya [Gap filling epoxy glue of cold curing] // Klei. Germetiki. Tekhnologii. 2012. №3. S. 10–12.
17. Zhadova N.S., Tyumeneva T.Yu., Sharova I.A., Lukina N.F. Perspektivnye tekhnologii dlya vremennogo operativnogo remonta aviatsionnoy tekhniki [Perspective technologies for temporary operational repair of aviation engineering] // Aviatsionnye materialy i tekhnologii. 2013. №2. S. 67–70. DOI: 10.18577/2071-9140-2013-0-2-67-70.
18. Sharova I.A., Lukina N.F., Aleksashin V.M., Antyufeeva N.V. Vliyanie sostava na kineticheskie i prochnostnye svoystva bystrootverzhdayushchikhsya epoksidnykh kleevykh kompozitsiy [Influence of structure on kinetic and strength properties fast-curing epoxy glue compositions] // Klei. Germetiki. Tekhnologii. 2015. №2. S. 1–5.
6.
№4, 2016
УДК 339.13:621.318.2
Ospennikova O.G.1, Piskorskiy V.P.1
The economics aspects of manufacturing permanents magnets (review)
In article the main economics questions of production of high-energy permanent magnets are considered. Features of production of permanent magnets in America, Europe, China of willows of Russia are considered. The forecast of development production of permanent magnets in the world and in Russia is given.
Work is executed within implementation of the complex scientific direction 11.1. «Thermostable magneto hard materials and mathematical models of calculation of their temperature characteristics for navigation instruments of new generation» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: high-energy permanent magnets, market of permanent magnets
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Coey J.M.D. Permanent magnets applications // Journal of Magnetism and Magnetic Materials. 2002. Vol. 248. Issue 3. P. 441–456.
3. Brown D., Ma B.-M., Chen Z. Developments in the processing and properties of NdFeB-type permanent magnets // Journal of Magnetism and Magnetic Materials. 2002. Vol. 248. P. 432–440.
4. Savchenko A.G. Magnity Nd–Fe–B i perspektivnye tekhnologii ikh proizvodstva [Magnets of Nd–Fe–B and perspective technologies of their production] // Nauchno-tekhnologicheskoe obespechenie deyatelnosti predpriyatiy, institutov i firm: sb. mater. seminara. M.: MGIU, 2003. S. 510–546.
5. Burkhanov G.S., Milyaev I.M., Yusupov V.S. Sovremennoe sostoyanie i tendentsii razvitiya magnitotverdykh materialov [Current state and tendencies of development of magnitotverdy materials] // Perspektivnye materialy. 2011. №11. S. 208–215.
6. Luo Y. Current Status of Global Nd–Fe–B Magnets Industry // Proc. of the 18th Int. Workshop on High Performance Magnets and their Applications (HPMA’04). Annecy, France, 2004. Vol. 1.
P. 28–39.
7. Sagawa M. 20 Years of Nd–Fe–B // Ibid. P. 7–11.
8. McCallum R.W. et al. Practical Aspects of Modern and Future Permanent Magnets // Annu. Rev. Mater. Res. 2014. Vol. 44. P. 451–477.
9. Tattam C., Higgins I., Kennedy D. Rare Earth Magnets: Raw Material issues // Proc. of the 18th Int. Workshop on High Performance Magnets and their Applications (HPMA’04). Annecy, France, 2004. Vol. 1. P. 15–21.
10. Kaneko Y. Technological Evolution and Application Trends of Nd–Fe–B Sintered Magnets in Japan // Ibid. P. 40–51.
11. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: May 06, 2016).
12. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaya N.P. Attestaciya standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem etalona [Certification of standard samples of structure of complex-alloyed alloys using standard] // Aviacionnye materialy i tehnologii. 2012. №2. S. 9–11.
13. Dvoretskov R.M., Karachevtsev F.N., Isachenko Ya.A., Zagvozdkina T.N. Opredelenie osnovnyh i legiruyushhih elementov v termostabilnyh magnitnyh materialah sistemy RZM–Fe–Co–B metodom AES-ISP [ICP-AES determination of basic and alloying elements in thermostable magnetic materials of REM–Fe–Co–B system] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №11. St. 10. Available at: http://viam-works.ru (accessed: May 10, 2016). DOI: 10.18577/2307-6046-2014-0-11-10-10.
14. Kablov E.N., Piskorskiy V.P., Valeev R.A., Ospennikova O.G. i dr. Rol mezhfaznoy diffuzii bora v formirovanii magnitnykh svoystv spechennykh materialov (Pr, Dy)–(Fe, Co)–B [Role of interphase diffusion of boron in forming of magnetic properties of the sintered materials
(Pr, Dy)–(Fe, Co)–B] // Metally. 2014. №4. S. 53.
15. Kablov E.N., Petrakov A.F., Piskorskiy V.P., Valeev R.A., Chabina E.B. Vliyanie prazeodima na magnitnye svoystva i fazovyy sostav materiala sistemy Nd–Pr–Dy–Fe–Co–B [Influence prazeodima on magnetic properties and phase structure of material of Nd–Pr–Dy–Fe–Co–B system] // MiTOM. 2005. №6 (600). S. 12–16.
16. Kablov E.N., Ospennikova O.G., Bayukov O.A., Pletnev O.N., Rezchikova I.I., Valeev R.A., Korolev D.V., Kunitsyna E.I., Piskorskiy V.P., Morgunov R.B. Vliyanie stekhiometrii Fe i So na temperaturnuyu stabil'nost' magnitnoy anizotropii v splavakh Pr−Dy−Fe−Co−B [Influence of stoichiometry of Fe and With on temperature stability of magnetic anisotropy in Pr−Dy−Fe−Co−B alloys] // FTT. 2015. T. 57. Vyp. 5. S. 1339–1342.
17. Menushenkov V.P., Savchenko A.G. Rynok magnitno-tverdykh materialov. Perspektivy proizvodstva i razvitiya redkozemel'nykh postoyannykh magnitov v XXI veke [Market of magnetic hard materials. Perspectives of production and development of rare-earth constant magnets in the XXI century] // Tr. 3-go rossiysko-yaponskogo seminara. M.: MISiS, 2005. S. 368.
18. Savchenko A.G., Menushenkov V.P. Covremennoe sostoyanie i problemy razvitiya postoyannykh magnitov iz splavov sistemy Nd–Fe–B [Modern condition and problems of development of constant magnets from Nd–Fe–B system alloys] // Tam zhe. S. 387.
19. Savchenko A.G., Menushenkov V.P. Redkozemelnye postoyannye magnity: printsipial'nye osnovy razrabotki i tekhnologiya proizvodstva [Rare-earth constant magnets: basic bases of development and production technology] // Materialovedenie i metallurgiya. Perspektivnye tekhnologii i oborudovanie: sb. mater. rossiysko-yaponskogo seminara. M.: MGIU, 2003. S. 125–157.
2. Coey J.M.D. Permanent magnets applications // Journal of Magnetism and Magnetic Materials. 2002. Vol. 248. Issue 3. P. 441–456.
3. Brown D., Ma B.-M., Chen Z. Developments in the processing and properties of NdFeB-type permanent magnets // Journal of Magnetism and Magnetic Materials. 2002. Vol. 248. P. 432–440.
4. Savchenko A.G. Magnity Nd–Fe–B i perspektivnye tekhnologii ikh proizvodstva [Magnets of Nd–Fe–B and perspective technologies of their production] // Nauchno-tekhnologicheskoe obespechenie deyatelnosti predpriyatiy, institutov i firm: sb. mater. seminara. M.: MGIU, 2003. S. 510–546.
5. Burkhanov G.S., Milyaev I.M., Yusupov V.S. Sovremennoe sostoyanie i tendentsii razvitiya magnitotverdykh materialov [Current state and tendencies of development of magnitotverdy materials] // Perspektivnye materialy. 2011. №11. S. 208–215.
6. Luo Y. Current Status of Global Nd–Fe–B Magnets Industry // Proc. of the 18th Int. Workshop on High Performance Magnets and their Applications (HPMA’04). Annecy, France, 2004. Vol. 1.
P. 28–39.
7. Sagawa M. 20 Years of Nd–Fe–B // Ibid. P. 7–11.
8. McCallum R.W. et al. Practical Aspects of Modern and Future Permanent Magnets // Annu. Rev. Mater. Res. 2014. Vol. 44. P. 451–477.
9. Tattam C., Higgins I., Kennedy D. Rare Earth Magnets: Raw Material issues // Proc. of the 18th Int. Workshop on High Performance Magnets and their Applications (HPMA’04). Annecy, France, 2004. Vol. 1. P. 15–21.
10. Kaneko Y. Technological Evolution and Application Trends of Nd–Fe–B Sintered Magnets in Japan // Ibid. P. 40–51.
11. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: May 06, 2016).
12. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaya N.P. Attestaciya standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem etalona [Certification of standard samples of structure of complex-alloyed alloys using standard] // Aviacionnye materialy i tehnologii. 2012. №2. S. 9–11.
13. Dvoretskov R.M., Karachevtsev F.N., Isachenko Ya.A., Zagvozdkina T.N. Opredelenie osnovnyh i legiruyushhih elementov v termostabilnyh magnitnyh materialah sistemy RZM–Fe–Co–B metodom AES-ISP [ICP-AES determination of basic and alloying elements in thermostable magnetic materials of REM–Fe–Co–B system] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №11. St. 10. Available at: http://viam-works.ru (accessed: May 10, 2016). DOI: 10.18577/2307-6046-2014-0-11-10-10.
14. Kablov E.N., Piskorskiy V.P., Valeev R.A., Ospennikova O.G. i dr. Rol mezhfaznoy diffuzii bora v formirovanii magnitnykh svoystv spechennykh materialov (Pr, Dy)–(Fe, Co)–B [Role of interphase diffusion of boron in forming of magnetic properties of the sintered materials
(Pr, Dy)–(Fe, Co)–B] // Metally. 2014. №4. S. 53.
15. Kablov E.N., Petrakov A.F., Piskorskiy V.P., Valeev R.A., Chabina E.B. Vliyanie prazeodima na magnitnye svoystva i fazovyy sostav materiala sistemy Nd–Pr–Dy–Fe–Co–B [Influence prazeodima on magnetic properties and phase structure of material of Nd–Pr–Dy–Fe–Co–B system] // MiTOM. 2005. №6 (600). S. 12–16.
16. Kablov E.N., Ospennikova O.G., Bayukov O.A., Pletnev O.N., Rezchikova I.I., Valeev R.A., Korolev D.V., Kunitsyna E.I., Piskorskiy V.P., Morgunov R.B. Vliyanie stekhiometrii Fe i So na temperaturnuyu stabil'nost' magnitnoy anizotropii v splavakh Pr−Dy−Fe−Co−B [Influence of stoichiometry of Fe and With on temperature stability of magnetic anisotropy in Pr−Dy−Fe−Co−B alloys] // FTT. 2015. T. 57. Vyp. 5. S. 1339–1342.
17. Menushenkov V.P., Savchenko A.G. Rynok magnitno-tverdykh materialov. Perspektivy proizvodstva i razvitiya redkozemel'nykh postoyannykh magnitov v XXI veke [Market of magnetic hard materials. Perspectives of production and development of rare-earth constant magnets in the XXI century] // Tr. 3-go rossiysko-yaponskogo seminara. M.: MISiS, 2005. S. 368.
18. Savchenko A.G., Menushenkov V.P. Covremennoe sostoyanie i problemy razvitiya postoyannykh magnitov iz splavov sistemy Nd–Fe–B [Modern condition and problems of development of constant magnets from Nd–Fe–B system alloys] // Tam zhe. S. 387.
19. Savchenko A.G., Menushenkov V.P. Redkozemelnye postoyannye magnity: printsipial'nye osnovy razrabotki i tekhnologiya proizvodstva [Rare-earth constant magnets: basic bases of development and production technology] // Materialovedenie i metallurgiya. Perspektivnye tekhnologii i oborudovanie: sb. mater. rossiysko-yaponskogo seminara. M.: MGIU, 2003. S. 125–157.
7.
№4, 2016
УДК 546.65
Ospennikova O.G.1, Piskorskiy V.P.1
Materials for permanent magnets (review)
The modern basics problems of extraction and production of materials for high-energy permanent magnets are considered. Features of extraction of rare-earth metals in Russia and in the world are considered. The analysis of the world and Russian market of REM is carried out. The analysis of solutions of the developed problems is provided. The analysis of ways of development REM production in Russia is carried out.
This work is performed within complex scientific direction 11.1. «Thermostability hard magnetic materials and mathematical models of calculation their temperature characteristics for new generation navigations devices» («The strategical directions of materials development and their processing technologies till 2030»)
Keywords: rare earth metals, permanent magnets, deposits of rare earth metals
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] //Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
4. Kablov E.N., Tolorajya V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii litya monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTE and GTU] // Aviacionnye materialy i tehnologii. 2012. №S. S. 105–117.
5. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol napravlennoj kristallizatsii v resursosberegayushchej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTE] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 01. Available at: http://www.viam-works.ru (accessed: May 18, 2016).
6. Kablov E.N., Tolorayya V.N., Demonis I.M., Orekhov N.G. Napravlennaya kristallizatsiya zharoprochnykh nikelevykh splavov [The directed crystallization of heat resisting nickel alloys] // Tekhnologiya legkikh splavov. 2007. №2. S. 60–70.
7. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A. Kablov D.E. Razvitie protsessa napravlennoy kristallizatsii lopatok GTD iz zharoprochnykh i intermetallidnykh splavov s monokristallicheskoy strukturoy [Development of process of the directed crystallization of blades of GTE from heat resisting and intermetallidny alloys with single-crystal structure] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. № SP2. S. 20–25.
8. Kablov E.N., Petrushin N.V., Elyutin E.S. Monokristallicheskie zharoprochnye splavy dlya gazoturbinnykh dvigateley [Single-crystal hot strength alloys for gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 38–52.
9. Mikhaylov Yu.M. Redkozemelnye metally – osnova polucheniya perspektivnykh materialov, neobkhodimykh dlya razvitiya vooruzheniy i voennoy tekhniki [Rare earth metals – basis of receiving the perspective materials necessary for development of arms and military technology] // Redkie zemli. 2014. №3. S. 56–61.
10. Melentev G. Redkozemelnye prioritety Rossii [Rare-earth priorities of Russia] // Redkie zemli. 2015. №1. S. 56–60.
11. Melentev G. Redkozemelnye prioritety Rossii [Rare-earth priorities of Russia] // Redkie zemli. 2014. №3. S. 18–32.
12. Pozdnyakov S. Kazhdoe porazhenie – nachalo novoy pobedy [Each defeat – the beginning of new victory] // Redkie zemli. 2014. №1. S. 136–141.
13. Melentev G.B. Redkozemelnye novosti Rossii [Rare-earth news of Russia] // Redkie zemli. 2016. №1 (6). S. 128–138.
14. Andreas E. Redkie zemli – biznes dlya umnykh [Rare lands – business for smart] // Redkie zemli. 2014. №2. S. 131–133.
15. Mashkovtsev G.A., Bykhovskiy L.Z., Rogozhin A.A., Temnov A.V. Velikolepnaya vosmerka [Magnificent eight] // Redkie zemli. 2014. №1. S. 18–21.
16. Melentev G.B., Samsonov A.E. Prodvizhenie Tomtora [Tomtor's advance] // Redkie zemli. 2014. №3. S. 34–39.
2. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] //Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
4. Kablov E.N., Tolorajya V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii litya monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTE and GTU] // Aviacionnye materialy i tehnologii. 2012. №S. S. 105–117.
5. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol napravlennoj kristallizatsii v resursosberegayushchej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTE] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 01. Available at: http://www.viam-works.ru (accessed: May 18, 2016).
6. Kablov E.N., Tolorayya V.N., Demonis I.M., Orekhov N.G. Napravlennaya kristallizatsiya zharoprochnykh nikelevykh splavov [The directed crystallization of heat resisting nickel alloys] // Tekhnologiya legkikh splavov. 2007. №2. S. 60–70.
7. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A. Kablov D.E. Razvitie protsessa napravlennoy kristallizatsii lopatok GTD iz zharoprochnykh i intermetallidnykh splavov s monokristallicheskoy strukturoy [Development of process of the directed crystallization of blades of GTE from heat resisting and intermetallidny alloys with single-crystal structure] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. № SP2. S. 20–25.
8. Kablov E.N., Petrushin N.V., Elyutin E.S. Monokristallicheskie zharoprochnye splavy dlya gazoturbinnykh dvigateley [Single-crystal hot strength alloys for gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 38–52.
9. Mikhaylov Yu.M. Redkozemelnye metally – osnova polucheniya perspektivnykh materialov, neobkhodimykh dlya razvitiya vooruzheniy i voennoy tekhniki [Rare earth metals – basis of receiving the perspective materials necessary for development of arms and military technology] // Redkie zemli. 2014. №3. S. 56–61.
10. Melentev G. Redkozemelnye prioritety Rossii [Rare-earth priorities of Russia] // Redkie zemli. 2015. №1. S. 56–60.
11. Melentev G. Redkozemelnye prioritety Rossii [Rare-earth priorities of Russia] // Redkie zemli. 2014. №3. S. 18–32.
12. Pozdnyakov S. Kazhdoe porazhenie – nachalo novoy pobedy [Each defeat – the beginning of new victory] // Redkie zemli. 2014. №1. S. 136–141.
13. Melentev G.B. Redkozemelnye novosti Rossii [Rare-earth news of Russia] // Redkie zemli. 2016. №1 (6). S. 128–138.
14. Andreas E. Redkie zemli – biznes dlya umnykh [Rare lands – business for smart] // Redkie zemli. 2014. №2. S. 131–133.
15. Mashkovtsev G.A., Bykhovskiy L.Z., Rogozhin A.A., Temnov A.V. Velikolepnaya vosmerka [Magnificent eight] // Redkie zemli. 2014. №1. S. 18–21.
16. Melentev G.B., Samsonov A.E. Prodvizhenie Tomtora [Tomtor's advance] // Redkie zemli. 2014. №3. S. 34–39.
8.
№2, 2016
УДК 621.792.053:346.544.42
Systems of Standardization for Self-Adhesive Materials
LiKK, LLC produces wide range of self-adhesive materials. In communication with customers we often faced with difference in terms and methods of evaluation of the quality of self-adhesive materials. The aim of this article to inform specialists working with self-adhesive materials about the most common systems of standards used in world practice for quality control.
Keywords: standard, Organization for Standardization, self-adhesive materials, label.
Reference List
1. Lipeckaja kleevaja kompanija (LiKK) [Lipetsk glue company]. Available at: http://likk.ru/testirovanie_materialov/kontrol_kachestva/ (accessed: March 14, 2016).
2. Krylova G.D. Osnovy standartizacii, sertifikacii, metrologii [Bases of standardization, certification, metrology]. M.: JuNITI, 1998. 479 s.
3. Lific I.M. Standartizacija, metrologija i sertifikacija [Standardization, metrology and certification]. M.: Jurajt, 2000. 285 s.
4. International Organization for Standardization. Available at: http://www.iso.org/iso/about.htm (accessed: February 18, 2016).
5. American Society for Testing and Materials. Available at: http://www.astm.org/ABOUT/aboutASTM.html (accessed: February 19, 2016).
6. The Pressure Sensitive Tapes Council. Available at: http://www.pstc.org/about.htm (accessed: March 02, 2016).
7. Tag and Label Manufacturers Institute. Available at: http://www.tlmi.com/history.php (accessed: March 04, 2016).
8. European Association for the Self Adhesive Tape Industry (Afera). Available at: http://www.afera.com/templates/mercury.asp?page_id=1573 (accessed: March 04, 2016).
9. Féderation Internationale des fabricants et transformateurs d' Adhésifs et Thermocollants. Available at: http://www.finat.com/templates/mercury.asp?page_id=1492 (accessed: March 02, 2016).
10. European Committee for Standardization. Available at: http://www.cen.eu/cenorm/aboutus/index.asp (accessed: February 25, 2016).
11. ChemInstruments. Available at: http://www.chemsultants.com/testing-equipment-products/index.aspx (accessed: March 15, 2016).
2. Krylova G.D. Osnovy standartizacii, sertifikacii, metrologii [Bases of standardization, certification, metrology]. M.: JuNITI, 1998. 479 s.
3. Lific I.M. Standartizacija, metrologija i sertifikacija [Standardization, metrology and certification]. M.: Jurajt, 2000. 285 s.
4. International Organization for Standardization. Available at: http://www.iso.org/iso/about.htm (accessed: February 18, 2016).
5. American Society for Testing and Materials. Available at: http://www.astm.org/ABOUT/aboutASTM.html (accessed: February 19, 2016).
6. The Pressure Sensitive Tapes Council. Available at: http://www.pstc.org/about.htm (accessed: March 02, 2016).
7. Tag and Label Manufacturers Institute. Available at: http://www.tlmi.com/history.php (accessed: March 04, 2016).
8. European Association for the Self Adhesive Tape Industry (Afera). Available at: http://www.afera.com/templates/mercury.asp?page_id=1573 (accessed: March 04, 2016).
9. Féderation Internationale des fabricants et transformateurs d' Adhésifs et Thermocollants. Available at: http://www.finat.com/templates/mercury.asp?page_id=1492 (accessed: March 02, 2016).
10. European Committee for Standardization. Available at: http://www.cen.eu/cenorm/aboutus/index.asp (accessed: February 25, 2016).
11. ChemInstruments. Available at: http://www.chemsultants.com/testing-equipment-products/index.aspx (accessed: March 15, 2016).
9.
№2, 2016
УДК 665.939.744.32:678.043
Modern developments of the V.A. Kargin Polymer Research Institute in the field of acrylic adhesives
The article describes adhesives based on acrylic monomers and oligomers designed by V.A. Kargin Polymer Research Institute for use as anaerobic sealants and gaskets, UV-curable coatings and adhesives for constructional purposes, as well as other adhesive and sealant compositions and their application techniques.
Keywords: anaerobic adhesives and sealants, structural acrylic adhesives.
Reference List
1. Aronovich D.A., Hamidulova Z.S., Muroh A.F. i dr. Kleevye i germetizirujushhie materialy, razrabotannye v FGUP «NII polimerov» [The glue and pressurizing materials developed in «SRI polimerov» Federal State Unitary Enterprise] // Novye klei i tehnologija skleivanija: mater. nauch.-praktich. seminara / CRDZ. M., 2014. S. 31–43.
2. Sineokov A.P., Hamidulova Z.S., Aronovich D.A. Novye razrabotki v oblasti reakcionnosposobnyh akrilovyh kleevyh i germetizirujushhih materialov [New development in the field of reaktsionnosposobny acrylic glue and pressurizing materials] // Klei. Germetiki. Tehnologii. 2007. №8. S. 17–21.
3. Muroh A.F., Aronovich D.A., Badryzlova M.P. i dr. Razrabotka anajerobnyh prokladok dlja avtomobilestroenija [Development of anaerobny laying for automotive industry] // Klei. Germetiki. Tehnologii. 2009. №9. S. 10–15.
4. Muroh A.F., Badryzlova M.P., Klenovich O.N. i dr. Sovremennye propityvajushhie materialy i tehnologii [Modern impregnating materials and technologies] // Litejshhik Rossii. 2011. №11. S. 45–46.
5. Aronovich D.A., Sineokova O.A., Zaitova N.V. i dr. UF-otverzhdaemye anajerobnye kleevye kompozicii [UV-curable anaerobny glue compositions] // Klei. Germetiki. Tehnologii. 2014. №5. S. 5–9.
6. Hamidulova Z., Aronovich D., Ustjuzhanceva N. i dr. Fotootverzhdaemye kompozicii dlja specialnyh otraslej tehniki [Photocurable of composition for special branches of equipment] // Promyshlennye pokrytija. 2014. №11–12. S. 52–55.
7. Aronovich D.A., Muroh A.F., Rybachuk G.V. i dr. Razrabotka fotootverzhdaemyh kompozicij so specialnymi svojstvami [Development of photocurable compositions with special properties] // Klei. Germetiki. Tehnologii. 2015. №6. S. 13–18.
8. Ustjuzhanceva N.A., Aronovich D.A., Sineokova O.A. i dr. Razrabotka strukturnyh bystrootverzhdajushhihsja kleev na osnove (met)akrilovyh monomerov [Development structural быстроотверждающихся glues on a basis (met)acrylic monomers] // Klei, germetiki, drugie materialy i tehnologija: mater. nauch.-praktich. seminara / CRDZ. M., 2015. S. 6–12.
9. Sineokova O.A., Hamidulova Z.S., Zhdanova O.G., Sineokov A.P. Termootverzhdaemyj strukturnyj akrilovyj adgeziv [Termohardening structural acrylic adhesive] // Klei. Germetiki. Tehnologii. 2014. №9. S. 5–8.
10. Muroh A.F., Hamidulova Z.S., Aronovich D.A. i dr. Primenenie polimernyh kleev i germetikov v litejnom proizvodstve [Application of polymeric glues and hermetics in foundry production] // Mater. X sezda litejshhikov Rossii. Kazan, 2011. S. 429–432.
11. Muroh A.F., Aronovich D.A., Hamidulova Z.S. i dr. Uplotnenie rezbovyh soedinenij germetikom predvaritel'nogo nanesenija [Consolidation of carving connections by hermetic of preliminary drawing] // Klei. Germetiki. Tehnologi. 2011. №5. S. 8–11.
12. Muroh A.F., Smirnov V.S., Hamidulova Z.S. i dr. Polimernye germetizirujushhie materialy i jeffektivnye tehnologii remonta truboprovodov [Polymeric pressurizing materials and effective technologies of repair of pipelines] // Remont, vosstanovlenie, modernizacija. 2013. №8. S. 32–36.
13. Muroh A.F., Smirnov V.S., Lukonin V.P. i dr. Tehnologija sborki trubchatyh teploobmennikov s ispolzovaniem germetikov [Technology of assembly of tubular heat exchangers with use of hermetics] // Klei. Germetiki. Tehnologii. 2015. №10. S. 38–40.
2. Sineokov A.P., Hamidulova Z.S., Aronovich D.A. Novye razrabotki v oblasti reakcionnosposobnyh akrilovyh kleevyh i germetizirujushhih materialov [New development in the field of reaktsionnosposobny acrylic glue and pressurizing materials] // Klei. Germetiki. Tehnologii. 2007. №8. S. 17–21.
3. Muroh A.F., Aronovich D.A., Badryzlova M.P. i dr. Razrabotka anajerobnyh prokladok dlja avtomobilestroenija [Development of anaerobny laying for automotive industry] // Klei. Germetiki. Tehnologii. 2009. №9. S. 10–15.
4. Muroh A.F., Badryzlova M.P., Klenovich O.N. i dr. Sovremennye propityvajushhie materialy i tehnologii [Modern impregnating materials and technologies] // Litejshhik Rossii. 2011. №11. S. 45–46.
5. Aronovich D.A., Sineokova O.A., Zaitova N.V. i dr. UF-otverzhdaemye anajerobnye kleevye kompozicii [UV-curable anaerobny glue compositions] // Klei. Germetiki. Tehnologii. 2014. №5. S. 5–9.
6. Hamidulova Z., Aronovich D., Ustjuzhanceva N. i dr. Fotootverzhdaemye kompozicii dlja specialnyh otraslej tehniki [Photocurable of composition for special branches of equipment] // Promyshlennye pokrytija. 2014. №11–12. S. 52–55.
7. Aronovich D.A., Muroh A.F., Rybachuk G.V. i dr. Razrabotka fotootverzhdaemyh kompozicij so specialnymi svojstvami [Development of photocurable compositions with special properties] // Klei. Germetiki. Tehnologii. 2015. №6. S. 13–18.
8. Ustjuzhanceva N.A., Aronovich D.A., Sineokova O.A. i dr. Razrabotka strukturnyh bystrootverzhdajushhihsja kleev na osnove (met)akrilovyh monomerov [Development structural быстроотверждающихся glues on a basis (met)acrylic monomers] // Klei, germetiki, drugie materialy i tehnologija: mater. nauch.-praktich. seminara / CRDZ. M., 2015. S. 6–12.
9. Sineokova O.A., Hamidulova Z.S., Zhdanova O.G., Sineokov A.P. Termootverzhdaemyj strukturnyj akrilovyj adgeziv [Termohardening structural acrylic adhesive] // Klei. Germetiki. Tehnologii. 2014. №9. S. 5–8.
10. Muroh A.F., Hamidulova Z.S., Aronovich D.A. i dr. Primenenie polimernyh kleev i germetikov v litejnom proizvodstve [Application of polymeric glues and hermetics in foundry production] // Mater. X sezda litejshhikov Rossii. Kazan, 2011. S. 429–432.
11. Muroh A.F., Aronovich D.A., Hamidulova Z.S. i dr. Uplotnenie rezbovyh soedinenij germetikom predvaritel'nogo nanesenija [Consolidation of carving connections by hermetic of preliminary drawing] // Klei. Germetiki. Tehnologi. 2011. №5. S. 8–11.
12. Muroh A.F., Smirnov V.S., Hamidulova Z.S. i dr. Polimernye germetizirujushhie materialy i jeffektivnye tehnologii remonta truboprovodov [Polymeric pressurizing materials and effective technologies of repair of pipelines] // Remont, vosstanovlenie, modernizacija. 2013. №8. S. 32–36.
13. Muroh A.F., Smirnov V.S., Lukonin V.P. i dr. Tehnologija sborki trubchatyh teploobmennikov s ispolzovaniem germetikov [Technology of assembly of tubular heat exchangers with use of hermetics] // Klei. Germetiki. Tehnologii. 2015. №10. S. 38–40.
10.
№2, 2016
УДК 66.014:541.64
Mukhametov R.R.1
Heat-resistant film adhesive of constructive purposes
The composition and method of synthesis of an adhesive based on the bisphenol A cyanate ester, polysulfone and epoxy novolac resin were developed. The reaction of a cyanate ester with an epoxy resins was investigated by the method of IR spectroscopy. It was shown that copolymerization of an aryl dicyanate and epoxy oligomer leads to receiving the oxazolidinone structures which promoting increase of the moisture resistance. Received epoxy cyanate film adhesive can be used in conditions of high humidity and a temperature to 200°C.
This work was executed within implementation of the complex scientific direction 13.1. «Binding for polymeric and composite materials of structural and special purpose» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: cyanate ester, epoxy resin, cyclotrimerisation, polycyanurate, curing, film adhesive, IR spectroscopy, shear strength.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Kompozity: segodnja i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
4. Pizzi A., Mittal K.L. Revised and expanded: handbook of adhesive technology. Marcel Dekker Inc., 2003. 999 p.
5. Petrova A.P., Lukina N.F., Starodubceva O.A., Dementeva L.A. 50 let laboratorii «Klei i kleevye prepregi» [50 years of laboratory «Glues and glue prepregs»]. M.: VIAM, 2008. 26 s.
6. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012. 520 s.
7. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: March 15, 2016). DOI: 10.18577/2307-6046-2015-0-9-11-11.
8. Dementeva L.A., Serezhenkov A.A., Bocharova L.I., Lukina N.F., Kucevich K.E., Petrova A.P. Svojstva kompozicionnyh materialov na osnove kleevyh prepregov [Properties of composite materials on the basis of glue препрегов] // Klei. Germetiki. Tehnologii. 2012. №6. S. 19–24.
9. Lukina N.F., Dementeva L.A., Kucevich K.E. Kleevye prepregi na osnove tkanej Porcher – perspektivnye materialy dlja detalej i agregatov iz PKM [Glue prepregs on the basis of Porcher fabrics – perspective materials for details and units from PCM] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 10. Available at: http://www.viam-works.ru (accessed: April 01, 2016). DOI: 10.18577/2307-6046-2014-0-6-10-10.
10. Pocius A. Klei, adgezija, tehnologija skleivanija: per. s angl [Glues, adhesion, technology of pasting: translation from English]. SPb.: Professija, 2016. 384 s.
11. Lavrishhev D.S., Mihajlin Ju.A. Poliimidnye klei [Poliimidnye glues] // Klei. Germetiki. Tehnologii. 2006. №8. S. 13–18.
12. Kuznecov A.A., Semenova G.K. Perspektivnye vysokotemperaturnye termoreaktivnye svjazujushhie dlja polimernyh kompozicionnyh materialov [Perspective high-temperature thermojet binding for polymeric composite materials] // Rossijskij himicheskij zhurnal. 2009. T. LIII. №4. S. 86–96.
13. Muhametov R.R., Merkulova Ju.I., Dolgova E.V., Dushin M.I. Poluchenie termostojkih polimernyh matric po reakcii policiklotrimerizacii cianovyh jefirov [Receiving heat-resistant polymeric matrixes on reaction of a politsiklotrimerizatsiya of cyanic air] // Klei. Germetiki. Tehnologii. 2014. №5. S. 10–14.
14. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
15. Zaldivar R. Lessons Learned in the Processing of Polycyanurate Resins Composites // Aerospace Report No. TR-98 (8565)-8 (2002).
16. Huang Li, Wang C., Lu Y. Thermal and Moisture Adsorption Properties of Cyanate Ester Modified Epoxy Resin and Fiber-Glass. Composites // Journal of Reinforced Plastics and Composites. 2008. V. 27. №7. P. 725–738.
2. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Kompozity: segodnja i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
4. Pizzi A., Mittal K.L. Revised and expanded: handbook of adhesive technology. Marcel Dekker Inc., 2003. 999 p.
5. Petrova A.P., Lukina N.F., Starodubceva O.A., Dementeva L.A. 50 let laboratorii «Klei i kleevye prepregi» [50 years of laboratory «Glues and glue prepregs»]. M.: VIAM, 2008. 26 s.
6. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012. 520 s.
7. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: March 15, 2016). DOI: 10.18577/2307-6046-2015-0-9-11-11.
8. Dementeva L.A., Serezhenkov A.A., Bocharova L.I., Lukina N.F., Kucevich K.E., Petrova A.P. Svojstva kompozicionnyh materialov na osnove kleevyh prepregov [Properties of composite materials on the basis of glue препрегов] // Klei. Germetiki. Tehnologii. 2012. №6. S. 19–24.
9. Lukina N.F., Dementeva L.A., Kucevich K.E. Kleevye prepregi na osnove tkanej Porcher – perspektivnye materialy dlja detalej i agregatov iz PKM [Glue prepregs on the basis of Porcher fabrics – perspective materials for details and units from PCM] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 10. Available at: http://www.viam-works.ru (accessed: April 01, 2016). DOI: 10.18577/2307-6046-2014-0-6-10-10.
10. Pocius A. Klei, adgezija, tehnologija skleivanija: per. s angl [Glues, adhesion, technology of pasting: translation from English]. SPb.: Professija, 2016. 384 s.
11. Lavrishhev D.S., Mihajlin Ju.A. Poliimidnye klei [Poliimidnye glues] // Klei. Germetiki. Tehnologii. 2006. №8. S. 13–18.
12. Kuznecov A.A., Semenova G.K. Perspektivnye vysokotemperaturnye termoreaktivnye svjazujushhie dlja polimernyh kompozicionnyh materialov [Perspective high-temperature thermojet binding for polymeric composite materials] // Rossijskij himicheskij zhurnal. 2009. T. LIII. №4. S. 86–96.
13. Muhametov R.R., Merkulova Ju.I., Dolgova E.V., Dushin M.I. Poluchenie termostojkih polimernyh matric po reakcii policiklotrimerizacii cianovyh jefirov [Receiving heat-resistant polymeric matrixes on reaction of a politsiklotrimerizatsiya of cyanic air] // Klei. Germetiki. Tehnologii. 2014. №5. S. 10–14.
14. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
15. Zaldivar R. Lessons Learned in the Processing of Polycyanurate Resins Composites // Aerospace Report No. TR-98 (8565)-8 (2002).
16. Huang Li, Wang C., Lu Y. Thermal and Moisture Adsorption Properties of Cyanate Ester Modified Epoxy Resin and Fiber-Glass. Composites // Journal of Reinforced Plastics and Composites. 2008. V. 27. №7. P. 725–738.
11.
№2, 2016
УДК 678.686:678.643
New adhesives of development of OJSC «Composite» for articles of rocket and space engineering
The paper presents new adhesives for space-rocket techniques: assembly polyurethane adhesives for adhering of bases used for mounting cables and interblock pipelines on spacecraft frame, structural adhesives with high heat resistance (150÷200°С), high-temperature cold-setting adhesives
Keywords: polyurethane assembly adhesive, structural, high-temperature adhesives, outgassing, shear strength.
12.
№2, 2016
УДК 621.792.053
Adhesive Materials in the Production of Foil Clad Dielectrics and Printed Circuits
A review of adhesive materials for production of dielectric substrates of rigid and flexible printed circuits is presented. Testing results for physico-mechanical proper-ties of adhesive compounds and composite materials on their basis are presented.
Keywords: adhesive materials, printed circuits
13.
№2, 2016
УДК 539.61:539.3
Adhesion and adhesion mechanics
Average adhesive strength is the most common measured result of adhesional experiments. It appears to be the function of different experimental parameters. Inhomogenеous stress distribution in the surface of adhesive joint is the reason of this phenomenon. This is the problem of adhesive mechanics. This paper briefly describes proposed physical approach to solving the problem and compares theoretical and experimental data.
Keywords: adhesion, mechanics, adhesive bonding intensity, stress, strength, contact layer.
Reference List
1. Rabinovich A.L. Vvedenie v mehaniku armirovannyh polimerov [Introduction in mechanics of the reinforced polymers]. M.: Nauka, 1970. 482 s.
2. Frejdin A.S., Turusov R.A. Svojstva i raschet adgezionnyh soedinenij [Properties and calculation of adhesive connections]. M.: Himija, 1990. 255 s.
3. Turusov R.A. Adgezionnaja mehanika [Adhesive mechanics]. M.: MGSU, 2015. 230 s.
4. Berlin A.A. Principy sozdanija kompozicionnyh polimernyh materialov [Principles of creation of composite polymeric materials]. M.: Himija, 1990. 240 s.
5. Polimernye kompozicionnye materialy. Svojstva, struktura, tehnologija [Polymeric composite materials. Properties, structure, technology] / pod red. A.A. Berlina. SPb.: Professija, 2009. 555 s.
2. Frejdin A.S., Turusov R.A. Svojstva i raschet adgezionnyh soedinenij [Properties and calculation of adhesive connections]. M.: Himija, 1990. 255 s.
3. Turusov R.A. Adgezionnaja mehanika [Adhesive mechanics]. M.: MGSU, 2015. 230 s.
4. Berlin A.A. Principy sozdanija kompozicionnyh polimernyh materialov [Principles of creation of composite polymeric materials]. M.: Himija, 1990. 240 s.
5. Polimernye kompozicionnye materialy. Svojstva, struktura, tehnologija [Polymeric composite materials. Properties, structure, technology] / pod red. A.A. Berlina. SPb.: Professija, 2009. 555 s.
14.
№4, 2015
УДК 621.792
MODERN TENDENCIES OF DEVELOPMENT SILICONE
SEALANTS AND COMPOUND ABROAD (review)
The literary and patent overview is provided in work carried out for the purpose of assessment of tendencies of development organic silicon elastomer abroad. Modern fillers for organic silicon rubbers, modification of organic silicon sealants, and also the main directions in researches of catalysis process hydrosilication abroad are considered.
Keywords: polymers, sealants, hydrosilication catalysts, hybrid systems.
Reference List
1. Skljarov N.M. Put' dlinoju v 70 let – ot drevesiny do supermaterialov [Way of 70 years – from wood to supermaterials] /Pod obshh. red. E.N. Kablova. M.: MISiS–VIAM. 2002. 488 s.
2. Savenkova A.V., Tihonova I.V., Trebukova E.D.. Teplomorozostojkie germetiki [Heatcold-resistant hermetics] /V sb.: Aviacionnye materialy na rubezhe ХХ–XXI vekov. M.: VIAM. 1994.
S. 432–439.
3. Petrova A.P., Donskoj A.A., Chalyh A.E., Shherbina A.A. Klejashhie materialy. Germetiki [Gluing materials. Hermetics]: Spravochnik. SPb.: NPO «Professional». 2008. 589 s.
4. Minakov V.T., Savenkova A.V., Donskoj A.A. Kremnijorganicheskie germetiki [Organic silicon hermetics]//Rossijskie polimernye novosti. 2003. V. 8. №4. S. 37–41.
5. Pohmer K., Steinberger H. Silicone rubbers: innovative – high performance – efficient //Organosilicon Chemistry IV. Wiley-VCH. 2000. P. 699–709.
6. Zhao M., Feng Y., Li G., Li Y., Wang Y., Han Y., Sun X., Tan X. Synthesis of an adhesion-enhancing polysiloxane containing epoxy groups for addition-cure silicone light emitting diodes encapsulant //Polym. Adv. Technol. 2014. №25 (9). P. 927–933.
7. Pan K., Zeng X., Li H., Lai X. Synthesis of Siloxanes Containing Vinyl and Epoxy Group and its Enhancement for Adhesion of Addition-Cure Silicone Encapsulant //J. Macromol. 2013. №50 (11). P. 1126–1132.
8. Polysiloxane blends has good adhesion to substrates, able release from molds; homo- or copolymers of polysiloxane, polysilsesquioxanes, or polysilicates; bonding to metallic, plastic and thermoplastic substrates: pat. 7288322 US; pabl. 30.10.2007.
9. Caseri W., Pregosin P.S. Hydrosilylation chemistry and catalysis with CiS–PtCl2(PhCH=CH2)2 //Organometallics. 1988. №7 (6). P. 1373–1380.
10. Addition curable self-adhesive silicone rubber composition: pat. 8937123 US; pabl. 20.01.2015.
11. Preparation of silicone rubber elastomers: pat. 8329831 US; pabl. 11.12.2012.
12. Silicone rubber composition with improved fluidity: pat. 5352724 US; pabl. 04.10.1994.
13. Liquid silicone rubber composition of low specific gravity: pat. 6297291 US; pabl. 02.01.2001.
14. Peeters L. Low viscosity, high strength and fast curing //Adhesion, adhesives, sealants. 2013. №10(1). P. 14–17.
15. Silicone-acrylic copolymer: pat. 0012653 US; pabl. 04.02.14.
16. Kownacki I., Marciniec B., Steinberger H., Kubicki M., Hoffmann M., Ziarko A., Szubert K., Majchrzak M., Rubinsztajn S. Effect of triorganophosphites on platinum catalyzed curing of silicon rubber //Appl. Catalysis A. 2009. V. 362 (1–2). P. 106–114.
17. Addition-curable fluorosilicone rubber composition: pat. 2700677 EP; pabl. 26.02.14.
18. Gerlach E., Romanowski R., Jones B.A., Netto T.J. New technology to produce silicone sponge without chemical blowing agents or volatile organics /Proceedings of «Blowing agents and foaming processes» conference. 2004. P. 197–204.
19. High resilient silicone foam and process for preparing same: pat. 7393879 US; pabl. 01.07.2008.
20. Hydrosilation reaction utilizing a (cyclopentadiene)(sigma-aliphatic) platinum complex and a free radical photoinitiator: pat. 6376569 US; pabl. 23.04.2002.
21. Photoinitiators for hydrosilation of polysiloxanes; release agents: pat. 4510094 US; pabl. 09.04.1985.
22. Irradiation-curable silicone compositions, photo-active platinum (IV) compounds, and method: pat. 6150546 US; pabl. 21.11.2000.
23. Cyclopentadienylplatinum (iv) compounds having a trisubstituted-silyl aliphatic group attached to platinum by carbon-platinum linkages as hydrosilylation catalysts in irradiation-curable silicones: pat. 6127446 US; pabl. 03.10.2000.
34. Mayer T., Burget D., Mignani G., Fouassier J. P. Photohydrosilylation reaction of silicone polymers. Platinum-based photocatalysts: Trimethyl(β-dicarbonyl) platinum IV complexes //J. Polymer Sci. A. 1996. №34 (15). P. 3141–3146.
25. Wang F., Neckers D.C. Photoactivated hydrosilylation reaction of alkynes //Organomet J. Chem. 2003. №665 (1–2). P. 1–6.
26. Maciejewski H., Wawrzyńczak A., Dutkiewicz M., Fiedorow R. Silicone waxes–synthesis via hydrosilylation in homo- and heterogeneous systems //Molec J. Catalysis. 2006. №257 (1–2).
P. 141–148.
27. Brook A. Silicon in Organic, Organometallic, and Polymer Chemistry //Wiley. 2000. V. 123. №5. P. 403–405.
28. Ru sulfoxide complexes, their preparation and use: pat. 0098435 US; pabl. 28.04.2011.
29. Chauhan M., Hauck B.J., Keller L.P., Boudjouk P. Hydrosilylation of alkynes catalyzed by platinum on carbon //J. Organomet. Chem. 2002. №645 (1–2). P. 1–13.
30. Jiménez R., Martínez-Rosales J.M., Cervantes J. The activity of Pt/SiO2 catalysts obtained by the sol-gel method in the hydrosilylation of 1-alkynes //Canadian Journal of Chemistry. 2003. №81 (11). P. 1370–1375.
31. Alonso F., Buitrago R., Moglie Y., Ruiz-Martinez J., Sepulveda-Escribano A., Yus M. Hydrosilylation of alkynes catalysed by platinum on titania //J. Organomet. Chem. 2011. №696 (1).
P. 368–372.
32. Reddy C.B., Shil A.K., Guha N.R., Sharma D., Das P. Solid Supported Palladium(0) Nanoparticles: An Efficient Heterogeneous Catalyst for Regioselective Hydrosilylation of Alkynes and Suzuki Coupling of β-Arylvinyl Iodides //Catalysis Letters. 2014. №144 (9). P. 1530–1536.
33. High activity catalyst for hydrosilylation reactions and methods of making the same: pat. 0051357 US; pabl. 19.02.2015.
34. Activation of metal salts with silylhydrides and their use in hydrosilylation reactions: pat. 0343311 US; pabl. 20.11.2014.
35. Unsaturated ketones as accelerators for hydrosilation: pat. 5424470 US; pabl. 13.06.1995.
36. Acetylenic alcohols and ethers as accelerators for hydrosilation: pat. 5449802 US; pabl. 12.09.1995.
37. Aldehydes as accelerators for hydrosilation: pat. 5616763 US; pabl. 01.04.1997.
38. Addition-curable silicone rubber composition: pat. 6274658 US; pabl. 14.08.2001.
39. Method for maintaining catalytic activity during a hydrosilylation reaction: pat. 5359113 US; pabl. 25.10.1994.
40. Hydrosilylation of unsaturated organic compounds in presence of platinum-based catalyst involves adding organic per-acid e.g. peracetic acid, during the reaction to activate or reactivate the catalyst: pat. 10133008 DE; pabl. 27.06.2002.
41. Hydrosilylation process and polymers produced by the process: pat. 6303728 US; pabl. 16.10.2001.
42. Promoted hydrosilation reactions: pat. 6590117 US; pabl. 08.07.2003.
43. Process and composition for promoting hydrosilylation reactions using sterically hindered nitrogen-containing and phosphorus-containing compounds: pat. 5191103 US; pabl. 02.03.1993.
2. Savenkova A.V., Tihonova I.V., Trebukova E.D.. Teplomorozostojkie germetiki [Heatcold-resistant hermetics] /V sb.: Aviacionnye materialy na rubezhe ХХ–XXI vekov. M.: VIAM. 1994.
S. 432–439.
3. Petrova A.P., Donskoj A.A., Chalyh A.E., Shherbina A.A. Klejashhie materialy. Germetiki [Gluing materials. Hermetics]: Spravochnik. SPb.: NPO «Professional». 2008. 589 s.
4. Minakov V.T., Savenkova A.V., Donskoj A.A. Kremnijorganicheskie germetiki [Organic silicon hermetics]//Rossijskie polimernye novosti. 2003. V. 8. №4. S. 37–41.
5. Pohmer K., Steinberger H. Silicone rubbers: innovative – high performance – efficient //Organosilicon Chemistry IV. Wiley-VCH. 2000. P. 699–709.
6. Zhao M., Feng Y., Li G., Li Y., Wang Y., Han Y., Sun X., Tan X. Synthesis of an adhesion-enhancing polysiloxane containing epoxy groups for addition-cure silicone light emitting diodes encapsulant //Polym. Adv. Technol. 2014. №25 (9). P. 927–933.
7. Pan K., Zeng X., Li H., Lai X. Synthesis of Siloxanes Containing Vinyl and Epoxy Group and its Enhancement for Adhesion of Addition-Cure Silicone Encapsulant //J. Macromol. 2013. №50 (11). P. 1126–1132.
8. Polysiloxane blends has good adhesion to substrates, able release from molds; homo- or copolymers of polysiloxane, polysilsesquioxanes, or polysilicates; bonding to metallic, plastic and thermoplastic substrates: pat. 7288322 US; pabl. 30.10.2007.
9. Caseri W., Pregosin P.S. Hydrosilylation chemistry and catalysis with CiS–PtCl2(PhCH=CH2)2 //Organometallics. 1988. №7 (6). P. 1373–1380.
10. Addition curable self-adhesive silicone rubber composition: pat. 8937123 US; pabl. 20.01.2015.
11. Preparation of silicone rubber elastomers: pat. 8329831 US; pabl. 11.12.2012.
12. Silicone rubber composition with improved fluidity: pat. 5352724 US; pabl. 04.10.1994.
13. Liquid silicone rubber composition of low specific gravity: pat. 6297291 US; pabl. 02.01.2001.
14. Peeters L. Low viscosity, high strength and fast curing //Adhesion, adhesives, sealants. 2013. №10(1). P. 14–17.
15. Silicone-acrylic copolymer: pat. 0012653 US; pabl. 04.02.14.
16. Kownacki I., Marciniec B., Steinberger H., Kubicki M., Hoffmann M., Ziarko A., Szubert K., Majchrzak M., Rubinsztajn S. Effect of triorganophosphites on platinum catalyzed curing of silicon rubber //Appl. Catalysis A. 2009. V. 362 (1–2). P. 106–114.
17. Addition-curable fluorosilicone rubber composition: pat. 2700677 EP; pabl. 26.02.14.
18. Gerlach E., Romanowski R., Jones B.A., Netto T.J. New technology to produce silicone sponge without chemical blowing agents or volatile organics /Proceedings of «Blowing agents and foaming processes» conference. 2004. P. 197–204.
19. High resilient silicone foam and process for preparing same: pat. 7393879 US; pabl. 01.07.2008.
20. Hydrosilation reaction utilizing a (cyclopentadiene)(sigma-aliphatic) platinum complex and a free radical photoinitiator: pat. 6376569 US; pabl. 23.04.2002.
21. Photoinitiators for hydrosilation of polysiloxanes; release agents: pat. 4510094 US; pabl. 09.04.1985.
22. Irradiation-curable silicone compositions, photo-active platinum (IV) compounds, and method: pat. 6150546 US; pabl. 21.11.2000.
23. Cyclopentadienylplatinum (iv) compounds having a trisubstituted-silyl aliphatic group attached to platinum by carbon-platinum linkages as hydrosilylation catalysts in irradiation-curable silicones: pat. 6127446 US; pabl. 03.10.2000.
34. Mayer T., Burget D., Mignani G., Fouassier J. P. Photohydrosilylation reaction of silicone polymers. Platinum-based photocatalysts: Trimethyl(β-dicarbonyl) platinum IV complexes //J. Polymer Sci. A. 1996. №34 (15). P. 3141–3146.
25. Wang F., Neckers D.C. Photoactivated hydrosilylation reaction of alkynes //Organomet J. Chem. 2003. №665 (1–2). P. 1–6.
26. Maciejewski H., Wawrzyńczak A., Dutkiewicz M., Fiedorow R. Silicone waxes–synthesis via hydrosilylation in homo- and heterogeneous systems //Molec J. Catalysis. 2006. №257 (1–2).
P. 141–148.
27. Brook A. Silicon in Organic, Organometallic, and Polymer Chemistry //Wiley. 2000. V. 123. №5. P. 403–405.
28. Ru sulfoxide complexes, their preparation and use: pat. 0098435 US; pabl. 28.04.2011.
29. Chauhan M., Hauck B.J., Keller L.P., Boudjouk P. Hydrosilylation of alkynes catalyzed by platinum on carbon //J. Organomet. Chem. 2002. №645 (1–2). P. 1–13.
30. Jiménez R., Martínez-Rosales J.M., Cervantes J. The activity of Pt/SiO2 catalysts obtained by the sol-gel method in the hydrosilylation of 1-alkynes //Canadian Journal of Chemistry. 2003. №81 (11). P. 1370–1375.
31. Alonso F., Buitrago R., Moglie Y., Ruiz-Martinez J., Sepulveda-Escribano A., Yus M. Hydrosilylation of alkynes catalysed by platinum on titania //J. Organomet. Chem. 2011. №696 (1).
P. 368–372.
32. Reddy C.B., Shil A.K., Guha N.R., Sharma D., Das P. Solid Supported Palladium(0) Nanoparticles: An Efficient Heterogeneous Catalyst for Regioselective Hydrosilylation of Alkynes and Suzuki Coupling of β-Arylvinyl Iodides //Catalysis Letters. 2014. №144 (9). P. 1530–1536.
33. High activity catalyst for hydrosilylation reactions and methods of making the same: pat. 0051357 US; pabl. 19.02.2015.
34. Activation of metal salts with silylhydrides and their use in hydrosilylation reactions: pat. 0343311 US; pabl. 20.11.2014.
35. Unsaturated ketones as accelerators for hydrosilation: pat. 5424470 US; pabl. 13.06.1995.
36. Acetylenic alcohols and ethers as accelerators for hydrosilation: pat. 5449802 US; pabl. 12.09.1995.
37. Aldehydes as accelerators for hydrosilation: pat. 5616763 US; pabl. 01.04.1997.
38. Addition-curable silicone rubber composition: pat. 6274658 US; pabl. 14.08.2001.
39. Method for maintaining catalytic activity during a hydrosilylation reaction: pat. 5359113 US; pabl. 25.10.1994.
40. Hydrosilylation of unsaturated organic compounds in presence of platinum-based catalyst involves adding organic per-acid e.g. peracetic acid, during the reaction to activate or reactivate the catalyst: pat. 10133008 DE; pabl. 27.06.2002.
41. Hydrosilylation process and polymers produced by the process: pat. 6303728 US; pabl. 16.10.2001.
42. Promoted hydrosilation reactions: pat. 6590117 US; pabl. 08.07.2003.
43. Process and composition for promoting hydrosilylation reactions using sterically hindered nitrogen-containing and phosphorus-containing compounds: pat. 5191103 US; pabl. 02.03.1993.
15.
№2, 2015
УДК 537.311.322
N.V. Permiakov1, A.O. Belorus1, S.S. Tulenin2, N.A. Forostyanaya2, V.F. Markov2
INERT HOLDERS FOR THE SYNTHESIS OF SEMICONDUCTOR FILMS
The method of chemical deposition requires inert substrate holder. 3D-printing technology is used for producing polypropylene holders of different configurations. The operating mode was adapted with polypropylene.
Keywords: chemical bath deposition, polypropylene holders, 3D-printer.
Reference List
1. Tulenin S.S., Bahteev S.A., Yusupov R.A., Maskaeva L.N., Markov V.F. Diagrammyi obrazovaniya plenok In2S3 i In2Se3 na sitalle v reaktsiyah osazhdeniya po dannyim potentsiometricheskogo titrovaniya [Charts of formation of films of In2S3 and In2Se3 on polycrystalline glass in sedimentation reactions according to potentiometer titration] //Zhurnal fizicheskoy himii. 2013. T. 87. №10. S. 1791–1798.
2. Matyushkin L.B., Permiakov N.V. Primenenie tehnologii 3D-pechati v obespechenii professionalno orientirovannoy podgotovki kadrov v interesah nanoindustrii [Application of technology of the 3D-press in ensuring professionally oriented training in interests of nanoindustry] //Biotehnosfera. 2013. №3 (27). S. 38–47.
3. Markov V.F., Maskaeva L.N., Ivanov P.N. Gidrohimicheskoe osazhdenie plenok sulfidov metallov: modelirovanie i eksperiment [Hydrochemical deposition of films of sulfides of metals: modeling and experiment]. Ekaterinburg: Izdatelstvo UrO RAN. 2006. 217 s.
4. Moshnikov V.A., Spivak Yu.M. Atomno-silovaya mikroskopiya dlya nanotehnologii i diagnostiki [Nuclear and power microscopy for nanotechnology and diagnostics]: Uchebnoe posobie. SPb.: Izdatelstvo SPbGETU «LETI». 2009. 80 s.
5. Moshnikov V.A., Spivak Yu.M., Alekseev P.A., Permiakov N.V. Atomno-silovaya mikroskopiya dlya issledovaniya nanostrukturirovannyih materialov i pribornyih struktur [Nuclear and power microscopy for research of the nanostructured materials and instrument structures]: ucheb. posobie. SPb.: Izdatelstvo SPbGETU «LETI». 2014. 144 s.
6. Evans B. Practical 3D printers. The Science and Art of 3D Printing. Apress, 2012.
2. Matyushkin L.B., Permiakov N.V. Primenenie tehnologii 3D-pechati v obespechenii professionalno orientirovannoy podgotovki kadrov v interesah nanoindustrii [Application of technology of the 3D-press in ensuring professionally oriented training in interests of nanoindustry] //Biotehnosfera. 2013. №3 (27). S. 38–47.
3. Markov V.F., Maskaeva L.N., Ivanov P.N. Gidrohimicheskoe osazhdenie plenok sulfidov metallov: modelirovanie i eksperiment [Hydrochemical deposition of films of sulfides of metals: modeling and experiment]. Ekaterinburg: Izdatelstvo UrO RAN. 2006. 217 s.
4. Moshnikov V.A., Spivak Yu.M. Atomno-silovaya mikroskopiya dlya nanotehnologii i diagnostiki [Nuclear and power microscopy for nanotechnology and diagnostics]: Uchebnoe posobie. SPb.: Izdatelstvo SPbGETU «LETI». 2009. 80 s.
5. Moshnikov V.A., Spivak Yu.M., Alekseev P.A., Permiakov N.V. Atomno-silovaya mikroskopiya dlya issledovaniya nanostrukturirovannyih materialov i pribornyih struktur [Nuclear and power microscopy for research of the nanostructured materials and instrument structures]: ucheb. posobie. SPb.: Izdatelstvo SPbGETU «LETI». 2014. 144 s.
6. Evans B. Practical 3D printers. The Science and Art of 3D Printing. Apress, 2012.