Articles
Composite materials
1.
№5-6, 2018
УДК 678.8
Chursova L.V.1, Tsybin A.I.1, Grebeneva T.A.1, Panina N.N.1
RECYCLING OF EPOXY RESINS AND POLYMER COMPOSITE MATERIALS ON THEIR BASES (review)
In this work the most common methods of recycling of carbon and glass composite materials based on epoxy resins are discussed. Recycling of thermosetting polymers and materials on their bases are one of the most difficult questions in modern chemistry of composite materials. This class of materials cannot be melted by heat and re-molded, since there are many strong cross-linking bonds in them. Even more difficult is recycling of polymer composite materials, which are multi-phase materials, which contain fillers, fibers and cured polymer matrix.
Keywords: recycling, thermosetting compositions, epoxy compositions, polymer composite materials.
Reference List
1. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnykh svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Development of VIAM Federal State Unitary Enterprise in the field of molten binding for polymeric composite materials] // Polimernye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
2. Chursova L.V., Dushin M.I., Kogan D.I., Panina N.N., Kim M.A., Gurevich YA.M., Platonov A.A. Plenochnye svyazuyushchie dlya RFI-tekhnologii [Film binding for RFI technology] // Rossiyskiy khimicheskiy zhurnal. 2010. T. 54. №1. S. 63–66.
3. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] // Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
4. Panina N.N., Kim M.A., Gurevich Ya.M., Grigorev M.M., Chursova L.V., Babin A.N. Svyazuyushchie dlya bezavtoklavnogo formovaniya izdeliy iz polimernykh kompozitsionnykh materialov [Binding for bezavtoklavny formation of products from polymeric composite materials] // Klei. Germetiki. Tekhnologii. 2013. №10. S. 18–27.
5. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: October 13, 2016). DOI 10.18577/2307-6046-2014-0-4-6-6.
6. Chursova L.V., Raskutin A.E., Gurevich Ya.M., Panina N.N. Svyazuyushchee kholodnogo otverzhdeniya dlya stroitelnoy industrii [Binding cold curing for the construction industry] // Klei. Germetiki. Tekhnologii. 2012. №5. S. 40–44.
7. Chursova L.V., Kim M.A., Panina N.N., Shvetsov E.P. Nanomodificirovannoe epoksidnoe svyazuyushhee dlya stroitelnoj industrii [Nanomodified epoxy binder for the construction industry] // Aviacionnye materialy i tehnologii. 2013. №1. S. 40–47.
8. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
9. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozitsionnykh materialov aviatsionnogo naznacheniya. I. Mekhanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] // Deformatsiya i razrushenie materialov. 2011. №11. S. 19–27.
10. Veshkin E.A., Postnov V.I., Abramov P.A. Puti povysheniya kachestva detaley iz PKM pri vakuumnom formovanii [Ways of improvement of quality of details from PCM at vacuum formation] // Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2012. T. 14. №4 (3). S. 831–838.
11. Grebeneva T.A., Panina N.N., Chursova L.V., TSybin A.I. Polimernye svyazuyushchie dlya kompozitsionnykh materialov stroitelnogo naznacheniya [Polymeric binding for composite materials of construction assignment] // Vse materialy. Entsiklopedicheskiy spravochnik. 2015. №8. S. 13–17.
12. Kogan D.I., Chursova L.V., Petrova A.P. Polimernye kompozitsionnye materialy, poluchennye putem propitki plenochnym svyazuyushchim [The polymeric composite materials received by impregnation by the film binding] // Kompozitsionnye materialy. 2011. №11. S. 2–6.
13. Grigorev M.M., Kogan D.I., Tverdaya O.N., Panina N.N. Osobennosti izgotovleniya PKM metodom RFI [Features of manufacturing of PCM RFI method] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2013. №4. St. 03. Available at: http://www.viam-works.ru (accessed: October 13, 2016).
14. Grigorev M.M., Kogan D.I., Gusev Yu.A., Gurevich Ya.M. Osobennosti izgotovleniya PKM metodom vakuumnogo formovaniya preprega [Features of producing composites by vacuum molding of prepreg] // Aviacionnye materialy i tehnologii. 2014. №3. S. 67–71. DOI: 10.18577/2071-9140-2014-0-3-67-71.
15. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
16. Pickering S.J. Recycling technologies for thermoset composite materials-current status // Composites: Part A. 2006. Vol. 37. P. 1206–1215.
17. Scheirs J. Polymer recycling: science, technology and applications. New York: Wiley, 1998. 614 р.
18. Process for separating fibres from composite materials: pat. WO 1993005883 A1, filed 18.09.92; publ. 01.04.93.
19. Hartt G.N., Carey D.P. Economics of recycling thermosets. SAE Technical Paper 920802. 1992. DOI:10.4271/920802.
20. Skrifvars M. Introduction to composites recycling // Recycling of composite materials in transport: COMPOSITE thematic network workshop (Pitea, Sweden, 2003). Available at: http://www.compositn.net (accessed: October 13, 2016).
21. Thomas R., Guild F.J., Adams R.D. The dynamic properties of recycled thermoset composites // Proceedings of eighth international conference on fibre reinforced composites-FRC 2000. Newcastle upon Tyne, UK, 2000. P. 549–556.
22. Pickering S.J., Benson M. The recycling of thermosetting plastics. Plastics and rubber institute. Second international conference plastics recycling. London, 1991. P. 21–31.
23. Pickering S.J., Kelly R.M., Kennerley J.R., Rudd C.D. A fluidized-bed process for the recovery of glass fibres from scrap thermoset composites // Composites Science and Technology. 2000. Vol. 60. No. 4. P. 509–523.
24. Yip H.L.H., Pickering S.J., Rudd C.D. Characterisation of carbon fibres recycled from scrap composites using fluidized bed process // Plastic Rubber and Composites. 2002. Vol. 31. No. 6. P. 278–282.
25. Soh S.K., Lee D.K., Cho Q., Rag Q. Low temperature pyrolysis of composite scrap. Proceedings of 10th annual ASM/ESD advanced composites conference. Dearborn (Michigan). 1994. P. 47–52.
26. Cunliffe A.M., Jones N., Williams P.T. Pyrolysis of composite plastic waste // Environmental Technology. 2003. Vol. 24. No. 5. P. 653–663.
27. Ushikoshi K., Komatsu N., Sugino M. Recycling of CFRP by pyrolysis method // Journal the Society Materials. Science. Japan. 1995. Vol. 44. P. 428–433.
28. Allred R.E., Newmeister G.C., Doak T.J., Cochran R.C., Coons A.B. Tertiary recycling of cured composite aircraft parts // Proc. «Composites97»: Manufacturing and Tooling Conference. Dearborn: Society of Manufacturing Engineers, 1997. P. EM97-110–EM97-110-17.
29. Allred R.E., Gosau J.M., Wesley T.F. Integrated composite recycling process // Proc. 38th SAMPLE Technology Conference (Dallas, 2006). Available at: https://www.researchgate.net/publica-tion/286712047_Integrated_Composite_Recycling_Process (accessed: October 13, 2016).
30. Grove-Neilsen E. Material and thermal recycling of wind turbine blades and other fibreglass items by ReFiber ApS // Recycling of composite materials in transport: COMPOSITE thematic network workshop (Pitea, Sweden, 2003). Available at: http://www.compositn.net (accessed: October 13, 2016).
31. Bell J.R., Pickering S.J., Yip H., Rudd C.D. Environmental aspects of the use of carbon fibre composites in vehicles-recycling and life cycle analysis // ELV: Proceedings of end of life vehicle conference. University of Warwick, 2002.
32. Kao C.C., Ghita O.R., Hallam K.R. et al. Mechanical studies of single glass fibres recycled from hydrolysis process using sub-critical water // Composites: Part A: Applied science and manufacturing. 2012. Vol. 43. No. 3. P. 398–410.
33. Kablov E.N. Aviatsionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossiyskoy akademii nauk. 2002. T. 72. №1. S. 3–12.
2. Chursova L.V., Dushin M.I., Kogan D.I., Panina N.N., Kim M.A., Gurevich YA.M., Platonov A.A. Plenochnye svyazuyushchie dlya RFI-tekhnologii [Film binding for RFI technology] // Rossiyskiy khimicheskiy zhurnal. 2010. T. 54. №1. S. 63–66.
3. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] // Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
4. Panina N.N., Kim M.A., Gurevich Ya.M., Grigorev M.M., Chursova L.V., Babin A.N. Svyazuyushchie dlya bezavtoklavnogo formovaniya izdeliy iz polimernykh kompozitsionnykh materialov [Binding for bezavtoklavny formation of products from polymeric composite materials] // Klei. Germetiki. Tekhnologii. 2013. №10. S. 18–27.
5. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: October 13, 2016). DOI 10.18577/2307-6046-2014-0-4-6-6.
6. Chursova L.V., Raskutin A.E., Gurevich Ya.M., Panina N.N. Svyazuyushchee kholodnogo otverzhdeniya dlya stroitelnoy industrii [Binding cold curing for the construction industry] // Klei. Germetiki. Tekhnologii. 2012. №5. S. 40–44.
7. Chursova L.V., Kim M.A., Panina N.N., Shvetsov E.P. Nanomodificirovannoe epoksidnoe svyazuyushhee dlya stroitelnoj industrii [Nanomodified epoxy binder for the construction industry] // Aviacionnye materialy i tehnologii. 2013. №1. S. 40–47.
8. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
9. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozitsionnykh materialov aviatsionnogo naznacheniya. I. Mekhanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] // Deformatsiya i razrushenie materialov. 2011. №11. S. 19–27.
10. Veshkin E.A., Postnov V.I., Abramov P.A. Puti povysheniya kachestva detaley iz PKM pri vakuumnom formovanii [Ways of improvement of quality of details from PCM at vacuum formation] // Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2012. T. 14. №4 (3). S. 831–838.
11. Grebeneva T.A., Panina N.N., Chursova L.V., TSybin A.I. Polimernye svyazuyushchie dlya kompozitsionnykh materialov stroitelnogo naznacheniya [Polymeric binding for composite materials of construction assignment] // Vse materialy. Entsiklopedicheskiy spravochnik. 2015. №8. S. 13–17.
12. Kogan D.I., Chursova L.V., Petrova A.P. Polimernye kompozitsionnye materialy, poluchennye putem propitki plenochnym svyazuyushchim [The polymeric composite materials received by impregnation by the film binding] // Kompozitsionnye materialy. 2011. №11. S. 2–6.
13. Grigorev M.M., Kogan D.I., Tverdaya O.N., Panina N.N. Osobennosti izgotovleniya PKM metodom RFI [Features of manufacturing of PCM RFI method] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2013. №4. St. 03. Available at: http://www.viam-works.ru (accessed: October 13, 2016).
14. Grigorev M.M., Kogan D.I., Gusev Yu.A., Gurevich Ya.M. Osobennosti izgotovleniya PKM metodom vakuumnogo formovaniya preprega [Features of producing composites by vacuum molding of prepreg] // Aviacionnye materialy i tehnologii. 2014. №3. S. 67–71. DOI: 10.18577/2071-9140-2014-0-3-67-71.
15. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
16. Pickering S.J. Recycling technologies for thermoset composite materials-current status // Composites: Part A. 2006. Vol. 37. P. 1206–1215.
17. Scheirs J. Polymer recycling: science, technology and applications. New York: Wiley, 1998. 614 р.
18. Process for separating fibres from composite materials: pat. WO 1993005883 A1, filed 18.09.92; publ. 01.04.93.
19. Hartt G.N., Carey D.P. Economics of recycling thermosets. SAE Technical Paper 920802. 1992. DOI:10.4271/920802.
20. Skrifvars M. Introduction to composites recycling // Recycling of composite materials in transport: COMPOSITE thematic network workshop (Pitea, Sweden, 2003). Available at: http://www.compositn.net (accessed: October 13, 2016).
21. Thomas R., Guild F.J., Adams R.D. The dynamic properties of recycled thermoset composites // Proceedings of eighth international conference on fibre reinforced composites-FRC 2000. Newcastle upon Tyne, UK, 2000. P. 549–556.
22. Pickering S.J., Benson M. The recycling of thermosetting plastics. Plastics and rubber institute. Second international conference plastics recycling. London, 1991. P. 21–31.
23. Pickering S.J., Kelly R.M., Kennerley J.R., Rudd C.D. A fluidized-bed process for the recovery of glass fibres from scrap thermoset composites // Composites Science and Technology. 2000. Vol. 60. No. 4. P. 509–523.
24. Yip H.L.H., Pickering S.J., Rudd C.D. Characterisation of carbon fibres recycled from scrap composites using fluidized bed process // Plastic Rubber and Composites. 2002. Vol. 31. No. 6. P. 278–282.
25. Soh S.K., Lee D.K., Cho Q., Rag Q. Low temperature pyrolysis of composite scrap. Proceedings of 10th annual ASM/ESD advanced composites conference. Dearborn (Michigan). 1994. P. 47–52.
26. Cunliffe A.M., Jones N., Williams P.T. Pyrolysis of composite plastic waste // Environmental Technology. 2003. Vol. 24. No. 5. P. 653–663.
27. Ushikoshi K., Komatsu N., Sugino M. Recycling of CFRP by pyrolysis method // Journal the Society Materials. Science. Japan. 1995. Vol. 44. P. 428–433.
28. Allred R.E., Newmeister G.C., Doak T.J., Cochran R.C., Coons A.B. Tertiary recycling of cured composite aircraft parts // Proc. «Composites97»: Manufacturing and Tooling Conference. Dearborn: Society of Manufacturing Engineers, 1997. P. EM97-110–EM97-110-17.
29. Allred R.E., Gosau J.M., Wesley T.F. Integrated composite recycling process // Proc. 38th SAMPLE Technology Conference (Dallas, 2006). Available at: https://www.researchgate.net/publica-tion/286712047_Integrated_Composite_Recycling_Process (accessed: October 13, 2016).
30. Grove-Neilsen E. Material and thermal recycling of wind turbine blades and other fibreglass items by ReFiber ApS // Recycling of composite materials in transport: COMPOSITE thematic network workshop (Pitea, Sweden, 2003). Available at: http://www.compositn.net (accessed: October 13, 2016).
31. Bell J.R., Pickering S.J., Yip H., Rudd C.D. Environmental aspects of the use of carbon fibre composites in vehicles-recycling and life cycle analysis // ELV: Proceedings of end of life vehicle conference. University of Warwick, 2002.
32. Kao C.C., Ghita O.R., Hallam K.R. et al. Mechanical studies of single glass fibres recycled from hydrolysis process using sub-critical water // Composites: Part A: Applied science and manufacturing. 2012. Vol. 43. No. 3. P. 398–410.
33. Kablov E.N. Aviatsionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossiyskoy akademii nauk. 2002. T. 72. №1. S. 3–12.
2.
№3-4, 2018
УДК 667.621
Mukhametov R.R.1, Petrova A.P.1
PROPERTIES OF EPOXY BINDERS AND THEIR PROCESSING IN POLYMERS COMPOSITION MATERIALS
The article describes the properties of epoxy binders for processing in polymer composition materials using different technologies. The differences between solution and non-solution are shown. Adhesive binders are particularly highlighted. Influence type of filler on structure and water resistance of polymer composition materials is shown. The temperature range of the processing binders is established. The different technologies of receiving polymer composition materials are shown. The differences between properties of binders processed by different technology are shown.
Keywords: binder, solution binder, solvent-free binder, non-solution binder, adhesive binder, mechanical properties, rheological properties.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Materialy novogo pokolenija [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
3. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokolenija, tehnologii ih sozdanija i pere-rabotki – osnova innovacij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylja Rodiny. 2016. №5. S. 8–18.
4. Muhamedov R.R., Petrova A.P., Ponomarenko S.A., Ahmadieva K.R., Pavlyuk B.F. Vliyanie tkanyh voloknistyh napolnitelej razlichnyh tipov na svojstva otverzhdennogo svyazuyushchego VS-2526K [Influence of woven fibrous fillers of various types on properties of cured binder VS-2526K] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №3 (63). St. 04. Available at: http//www.viam-works.ru (accessed: April 13, 2018). DOI: 10.18577/2307-6046-2018-0-3-4-4.
5. Muhamedov R.R., Petrova A.P., Ponomarenko S.A., Dolgova E.V., Pavlyuk B.F. Svojstva svyazuyushchego EDT-69N i PKM na ego osnove [Properties of binder EDT-69N and polymer composites on its basis] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №4 (64). St. 04. Available at: http//www.viam-works.ru (accessed: April 13, 2018). DOI: 10.18577/2307-6046-2018-0-4-4-4.
6. Babin A. N. Svyazujushhie dlya polimernyh kompozicionnyh materialov novogo pokoleniya [Binding for polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: April 13, 2018).
7. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: April 13, 2018). DOI 10.18577/2307-6046-2014-0-4-6-6.
8. Panina N.N., Kim M.A., Gurevich YA.M., Grigorev M.M. i dr. Svyazuyushchie dlya bezavtoklavnogo formovaniya izdelij iz polimernyh kompozitsionnyh materialov [Binding for without avtoklavny formation of products from polymeric composite materials] // Klei. Germetiki. Tekhnologii. 2013. №10. S. 18–27.
9. Kablov E.N., Chursova L.V., Babin A.N., Muhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnyh svyazuyushchih dlya polimernyh kompozitsionnyh materialov [Development of VIAM Federal State Unitary Enterprise in the field of molten binding for polymeric composite materials] // Polimernye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
10. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
11. Chursova L.V., Panina N.N., Grebeneva T.A., Terekhov I.V., Donetskij K.I. Termoreaktivnye svyazuyushchie i polimernye bindery dlya polimernyh kompozitsionnyh materialov, poluchaemyh metodom vakuumnoj infuzii [Thermosetting binding and polymeric Bendery for the polymeric composite materials received by method of vacuum infusion] // Plasticheskie massy. 2018. №1–2. S. 57–63.
12. Chursova L.V., Dushin M.I., Kogan D.I. i dr. Plenochnye svyazuyushchie dlya RFI-tekhnologii [Film binding for RFI technology] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 63–66.
13. Kogan D.I., Chursova L.V., Petrova A.P. Tekhnologiya izgotovleniya PKM sposobom propitki plenochnym svyazuyushchim [PKM manufacturing techniques in the way of impregnation by the film binding] // Klei. Germetiki. Tekhnologii. 2011. №6. S. 25–29.
14. Kogan D.I., CHursova L.V., Petrova A.P. Polimernye kompozitsionnye materialy, poluchennye putem propitki plenochnym svyazuyushchim [The polymeric composite materials received by impregnation by the film binding] // Vse materialy. Entsiklopedicheskij spravochnik. 2011. №11. S. 2–6.
15. Lukina N.F., Dementeva L.A., Petrova A.P. i dr. Kleevye svyazuyushchie dlya detalej iz PKM sotovoj konstruktsii [Glue binding for details from PKM of cellular design] // Klei. Germetiki. Tekhnologii. 2016. №5. S. 12–16.
16. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. Kleevye svjazujushhie dlja polimernyh kompozicionnyh materialov na ugle- i steklonapolniteljah [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: April 13, 2018). DOI: 10.18577/2307-6046-2015-0-9-11-11.
17. Petrova A.P., Lukina N.F., Melnikov D.A., Besednov K.L., Pavlyuk B.F. Issledovanie svojstv otverzhdennyh kleevyh svyazuyushchih [Research of properties of cured adhesive binders] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №10 (58). St. 06. Available at:http//www.viam-works.ru (accessed: April 13, 2018). DOI: 10.18577/2307-6046-2017-0-10-6-6.
18. Petrova A.P., Lukina N.F., Mel'nikov D.A., Besednov K.L., Pavlyuk B.F. Mekhanicheskie svojstva otverzhdennyh kleevyh svyazuyushchih [Mechanical properties of the otverzhdenny glue binding] // Klei. Germetiki. Tekhnologii. 2018. №3. S. 14–17.
19. Petrova A.P., Malysheva T.V. Klei, kleevye svyazuyushchie i kleevye prepregi: uchebnoe posobie [Glues, glue binding and glue prepregs: manual] / pod obshch. red. E.N. Kablova. M.: VIAM, 2017. 472 s.
2. Kablov E.N. Materialy novogo pokolenija [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
3. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokolenija, tehnologii ih sozdanija i pere-rabotki – osnova innovacij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylja Rodiny. 2016. №5. S. 8–18.
4. Muhamedov R.R., Petrova A.P., Ponomarenko S.A., Ahmadieva K.R., Pavlyuk B.F. Vliyanie tkanyh voloknistyh napolnitelej razlichnyh tipov na svojstva otverzhdennogo svyazuyushchego VS-2526K [Influence of woven fibrous fillers of various types on properties of cured binder VS-2526K] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №3 (63). St. 04. Available at: http//www.viam-works.ru (accessed: April 13, 2018). DOI: 10.18577/2307-6046-2018-0-3-4-4.
5. Muhamedov R.R., Petrova A.P., Ponomarenko S.A., Dolgova E.V., Pavlyuk B.F. Svojstva svyazuyushchego EDT-69N i PKM na ego osnove [Properties of binder EDT-69N and polymer composites on its basis] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №4 (64). St. 04. Available at: http//www.viam-works.ru (accessed: April 13, 2018). DOI: 10.18577/2307-6046-2018-0-4-4-4.
6. Babin A. N. Svyazujushhie dlya polimernyh kompozicionnyh materialov novogo pokoleniya [Binding for polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: April 13, 2018).
7. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: April 13, 2018). DOI 10.18577/2307-6046-2014-0-4-6-6.
8. Panina N.N., Kim M.A., Gurevich YA.M., Grigorev M.M. i dr. Svyazuyushchie dlya bezavtoklavnogo formovaniya izdelij iz polimernyh kompozitsionnyh materialov [Binding for without avtoklavny formation of products from polymeric composite materials] // Klei. Germetiki. Tekhnologii. 2013. №10. S. 18–27.
9. Kablov E.N., Chursova L.V., Babin A.N., Muhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnyh svyazuyushchih dlya polimernyh kompozitsionnyh materialov [Development of VIAM Federal State Unitary Enterprise in the field of molten binding for polymeric composite materials] // Polimernye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
10. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
11. Chursova L.V., Panina N.N., Grebeneva T.A., Terekhov I.V., Donetskij K.I. Termoreaktivnye svyazuyushchie i polimernye bindery dlya polimernyh kompozitsionnyh materialov, poluchaemyh metodom vakuumnoj infuzii [Thermosetting binding and polymeric Bendery for the polymeric composite materials received by method of vacuum infusion] // Plasticheskie massy. 2018. №1–2. S. 57–63.
12. Chursova L.V., Dushin M.I., Kogan D.I. i dr. Plenochnye svyazuyushchie dlya RFI-tekhnologii [Film binding for RFI technology] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 63–66.
13. Kogan D.I., Chursova L.V., Petrova A.P. Tekhnologiya izgotovleniya PKM sposobom propitki plenochnym svyazuyushchim [PKM manufacturing techniques in the way of impregnation by the film binding] // Klei. Germetiki. Tekhnologii. 2011. №6. S. 25–29.
14. Kogan D.I., CHursova L.V., Petrova A.P. Polimernye kompozitsionnye materialy, poluchennye putem propitki plenochnym svyazuyushchim [The polymeric composite materials received by impregnation by the film binding] // Vse materialy. Entsiklopedicheskij spravochnik. 2011. №11. S. 2–6.
15. Lukina N.F., Dementeva L.A., Petrova A.P. i dr. Kleevye svyazuyushchie dlya detalej iz PKM sotovoj konstruktsii [Glue binding for details from PKM of cellular design] // Klei. Germetiki. Tekhnologii. 2016. №5. S. 12–16.
16. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. Kleevye svjazujushhie dlja polimernyh kompozicionnyh materialov na ugle- i steklonapolniteljah [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: April 13, 2018). DOI: 10.18577/2307-6046-2015-0-9-11-11.
17. Petrova A.P., Lukina N.F., Melnikov D.A., Besednov K.L., Pavlyuk B.F. Issledovanie svojstv otverzhdennyh kleevyh svyazuyushchih [Research of properties of cured adhesive binders] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №10 (58). St. 06. Available at:http//www.viam-works.ru (accessed: April 13, 2018). DOI: 10.18577/2307-6046-2017-0-10-6-6.
18. Petrova A.P., Lukina N.F., Mel'nikov D.A., Besednov K.L., Pavlyuk B.F. Mekhanicheskie svojstva otverzhdennyh kleevyh svyazuyushchih [Mechanical properties of the otverzhdenny glue binding] // Klei. Germetiki. Tekhnologii. 2018. №3. S. 14–17.
19. Petrova A.P., Malysheva T.V. Klei, kleevye svyazuyushchie i kleevye prepregi: uchebnoe posobie [Glues, glue binding and glue prepregs: manual] / pod obshch. red. E.N. Kablova. M.: VIAM, 2017. 472 s.
3.
№3-4, 2018
УДК 678.8
A.V. Hrulkov1, Timoshkov P.N.1, Yazvenko L.N.1, Usacheva M.N.1
COMPOSITE MATERIALS FOR MEDICAL AND BIOLOGICAL PURPOSES (review)
Restrictions due to sanctions imposed against the Russian Federation led to a certain shortage of raw materials and equipment, which forced to create its own production of PCM structures – in particular, for promising materials for medical and biological purposes.
In this review, the advantages of composite materials in comparison with metal and ceramic implants and prostheses are discussed, promising directions of using PCM for biomedical applications in prosthetics and implantation, material requirements, problems of biomedical composite materials.
Keywords: composite materials, biomaterial, implant, prosthesis, carbon fiber, medical equipment.
Reference List
1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their pro-cessing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
2. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokolenija, tehnologii ih sozdanija i pere-rabotki – osnova innovacij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylja Rodiny. 2016. №5. S. 8–18.
5. Daskovskij M.I., Doriomedov M.S., Sevastyanov D.V., Skripachev S.YU. Polimernye biokompozity – perspektivy primeneniya (obzor) [Polymer biocomposites – prospects of application (review)] // Aviatsionnye materialy i tekhnologii. 2017. №3. S. 74–80. DOI: 10.18577/2071-9140-2017-0-3-74-80.
6. Sevastyanov D.V., Sutubalov I.V., Daskovskij M.I., SHein E.A. Polimernye biokompozity na osnove biorazlagaemyh svyazuyushchih, armirovannyh naturalnymi voloknami (obzor) [Polymer biocomposites based on biodegradable binders reinforced by natural fibers (review)] // Aviatsionnye materialy i tekhnologii. 2017. №4. S. 42–50. DOI: 10.18577/2071-9140-2017-0-4-42-50.
7. Bebionic: [Elektronnyj resurs]. Germany, Duderstadt. URL: http://bebionic.com/ (accessed: March 27, 2018).
8. Rentgenovskie flyuorograficheskie apparaty: katalog kompanii «AMIKO rentgenotekhnika» [X-ray fluorographic devices: company catalog «AMIKO rentgenotekhnik»]. M.: GU RosNII IT i AP, 2011. 9 s.
9. Duppenbecker P.M., Wehner J., Renz W. et al. Gradient transparent RF housing for simultaneous PET/MRI using carbon fiber composites // Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (Anaheim, CA, USA, October 27–November 3, 2012). 2012. P. 3478–3480.
10. Inspirit Medical Solutions: [Elektronnyj resurs]. URL: https://www.inspiritmed.com/ (accessed: March 27, 2018).
11. Shtilman M.I. Polimery mediko-biologicheskogo naznacheniya [Polymers of medicobiological assignment]. M.: Akademkniga, 2006. 400 s.
12. Uglerod-uglerodnyj kompozitsionnyj material [Carbon-carbon composite material]: pat. 2391118 Ros. Federatsiya. №2008137112/15; zayavl. 17.09.08; opubl. 10.06.10.
13. Andreeva A.V. Osnovy fizikohimii i tekhnologii kompozitov:. ucheb. posobie dlya vuzov [Bases of fizikokhimiya and technology of composites: the manual for higher education institutions]. M.: IPRZHR, 2001. 192 s.
14. Volova T.G. Materialy dlya meditsiny, kletochnoj i tkanevoj inzhenerii: elektron. ucheb. posobie [Materials for medicine, cellular and fabric engineering: electronic manual]. Krasnoyarsk: IPK SFU, 2009. 1 elektron. opt. disk.
15. Salernitano E., Migliaresi C. Composite materials for biomedical applications: a review // Journal of Applied Biomaterials & Biomechanics. 2003. Vol. 1. P. 3–18.
16. Ramakrishna S., Mayer J., Wintermantel E., Leong K.W. Biomedical applications of polymer-composite materials: a review // Composites Science and Technology. 2001. Vol. 61. P. 1189–1224.
17. De Santis R., Prisco D., Apicella A. et al. Carbon fiber post adhesion to resin luting cement in the restoration of endodontically treated teeth // Journal of Materials Science Materials in Medicine. 2000. Vol. 11. P. 201–206.
18. Petersen R. Carbon fiber biocompatibility for implants // Fibers. 2016. Vol. 4 (1). P. 1.
19. Ali M.S., French T.A., Hastings G.W. et al. Carbon fibre composite bone plates // The Journal of Bone and Joint Surgery. 1990. Vol. 72. P. 586–591.
20. Pimberton D.J., McKibbin B., Savage R. et al. Carbon-fibre reinforced plates for problem factures // The Journal of Bone and Joint Surgery. 1992. Vol. 74. P. 88–92.
21. Tarallo L., Mugnai R., Adani R. et al. A new volar plate made of carbon-fiber-reinforced polyetheretherketon for distal radius fracture: analysis of 40 cases // Journal of Orthopaedics and Traumatology. 2014. Vol. 15. P. 277–283.
22. Blazewicz M. Carbon materials in the treatment of soft and hard tissue injuries // European Cells & Materials. 2001. Vol. 2. P. 21–29.
23. Medes D.G., Angel D., Grishkan A., Boss J. Histological response to carbon fiber // The Journal of Bone and Joint Surgery. 1985. Vol. 67. P. 645–649.
24. Ratner B.D., Hoffman A.S., Schoen F.J. Composites // Biomaterials Science. 2nd ed. 2004. P. 183.
25. Pilliar R.M., Blackwell R., Mancnab I., Cameron H.U. Carbon fiber-reinforced bone cement in orthopedic surgery // Journal of Biomedical Materials Research. 1976. Vol. 10. P. 893–906.
26. Saha S., Pal S. Mechanical characterization of commercially made carbon-fiber-reinforced polymethylmethacrylate // Journal of Biomedical Materials Research. 1986. Vol. 20. P. 817–826.
27. Huang Z.-M., Fujihara K. Stiffness and strength design of composite bone plates // Composites Science and Technology. 2005. Vol. 65. P. 73–85.
28. Bagheri Z.S., Avval P.T., Bougherara H. et al. Biomechanical analysis of a new carbon fiber/flax/epoxy bone fracture plate shows less stress shielding compared to a standard clinical metal plate. Transactions of the ASME // Journal of Biomedical Engineering. 2014. Vol. 136. P. 136–139.
29. Tekhnologiya polimerov mediko-biologicheskogo naznacheniya. Polimery prirodnogo proiskhozhdeniya: ucheb. posobie [Technology of polymers of medicobiological assignment. Polymers of natural origin: manual] / pod red. M.I. Shtilmana. M.: BINOM. Laboratoriya znanij, 2015. 328 s.
2. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokolenija, tehnologii ih sozdanija i pere-rabotki – osnova innovacij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylja Rodiny. 2016. №5. S. 8–18.
5. Daskovskij M.I., Doriomedov M.S., Sevastyanov D.V., Skripachev S.YU. Polimernye biokompozity – perspektivy primeneniya (obzor) [Polymer biocomposites – prospects of application (review)] // Aviatsionnye materialy i tekhnologii. 2017. №3. S. 74–80. DOI: 10.18577/2071-9140-2017-0-3-74-80.
6. Sevastyanov D.V., Sutubalov I.V., Daskovskij M.I., SHein E.A. Polimernye biokompozity na osnove biorazlagaemyh svyazuyushchih, armirovannyh naturalnymi voloknami (obzor) [Polymer biocomposites based on biodegradable binders reinforced by natural fibers (review)] // Aviatsionnye materialy i tekhnologii. 2017. №4. S. 42–50. DOI: 10.18577/2071-9140-2017-0-4-42-50.
7. Bebionic: [Elektronnyj resurs]. Germany, Duderstadt. URL: http://bebionic.com/ (accessed: March 27, 2018).
8. Rentgenovskie flyuorograficheskie apparaty: katalog kompanii «AMIKO rentgenotekhnika» [X-ray fluorographic devices: company catalog «AMIKO rentgenotekhnik»]. M.: GU RosNII IT i AP, 2011. 9 s.
9. Duppenbecker P.M., Wehner J., Renz W. et al. Gradient transparent RF housing for simultaneous PET/MRI using carbon fiber composites // Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (Anaheim, CA, USA, October 27–November 3, 2012). 2012. P. 3478–3480.
10. Inspirit Medical Solutions: [Elektronnyj resurs]. URL: https://www.inspiritmed.com/ (accessed: March 27, 2018).
11. Shtilman M.I. Polimery mediko-biologicheskogo naznacheniya [Polymers of medicobiological assignment]. M.: Akademkniga, 2006. 400 s.
12. Uglerod-uglerodnyj kompozitsionnyj material [Carbon-carbon composite material]: pat. 2391118 Ros. Federatsiya. №2008137112/15; zayavl. 17.09.08; opubl. 10.06.10.
13. Andreeva A.V. Osnovy fizikohimii i tekhnologii kompozitov:. ucheb. posobie dlya vuzov [Bases of fizikokhimiya and technology of composites: the manual for higher education institutions]. M.: IPRZHR, 2001. 192 s.
14. Volova T.G. Materialy dlya meditsiny, kletochnoj i tkanevoj inzhenerii: elektron. ucheb. posobie [Materials for medicine, cellular and fabric engineering: electronic manual]. Krasnoyarsk: IPK SFU, 2009. 1 elektron. opt. disk.
15. Salernitano E., Migliaresi C. Composite materials for biomedical applications: a review // Journal of Applied Biomaterials & Biomechanics. 2003. Vol. 1. P. 3–18.
16. Ramakrishna S., Mayer J., Wintermantel E., Leong K.W. Biomedical applications of polymer-composite materials: a review // Composites Science and Technology. 2001. Vol. 61. P. 1189–1224.
17. De Santis R., Prisco D., Apicella A. et al. Carbon fiber post adhesion to resin luting cement in the restoration of endodontically treated teeth // Journal of Materials Science Materials in Medicine. 2000. Vol. 11. P. 201–206.
18. Petersen R. Carbon fiber biocompatibility for implants // Fibers. 2016. Vol. 4 (1). P. 1.
19. Ali M.S., French T.A., Hastings G.W. et al. Carbon fibre composite bone plates // The Journal of Bone and Joint Surgery. 1990. Vol. 72. P. 586–591.
20. Pimberton D.J., McKibbin B., Savage R. et al. Carbon-fibre reinforced plates for problem factures // The Journal of Bone and Joint Surgery. 1992. Vol. 74. P. 88–92.
21. Tarallo L., Mugnai R., Adani R. et al. A new volar plate made of carbon-fiber-reinforced polyetheretherketon for distal radius fracture: analysis of 40 cases // Journal of Orthopaedics and Traumatology. 2014. Vol. 15. P. 277–283.
22. Blazewicz M. Carbon materials in the treatment of soft and hard tissue injuries // European Cells & Materials. 2001. Vol. 2. P. 21–29.
23. Medes D.G., Angel D., Grishkan A., Boss J. Histological response to carbon fiber // The Journal of Bone and Joint Surgery. 1985. Vol. 67. P. 645–649.
24. Ratner B.D., Hoffman A.S., Schoen F.J. Composites // Biomaterials Science. 2nd ed. 2004. P. 183.
25. Pilliar R.M., Blackwell R., Mancnab I., Cameron H.U. Carbon fiber-reinforced bone cement in orthopedic surgery // Journal of Biomedical Materials Research. 1976. Vol. 10. P. 893–906.
26. Saha S., Pal S. Mechanical characterization of commercially made carbon-fiber-reinforced polymethylmethacrylate // Journal of Biomedical Materials Research. 1986. Vol. 20. P. 817–826.
27. Huang Z.-M., Fujihara K. Stiffness and strength design of composite bone plates // Composites Science and Technology. 2005. Vol. 65. P. 73–85.
28. Bagheri Z.S., Avval P.T., Bougherara H. et al. Biomechanical analysis of a new carbon fiber/flax/epoxy bone fracture plate shows less stress shielding compared to a standard clinical metal plate. Transactions of the ASME // Journal of Biomedical Engineering. 2014. Vol. 136. P. 136–139.
29. Tekhnologiya polimerov mediko-biologicheskogo naznacheniya. Polimery prirodnogo proiskhozhdeniya: ucheb. posobie [Technology of polymers of medicobiological assignment. Polymers of natural origin: manual] / pod red. M.I. Shtilmana. M.: BINOM. Laboratoriya znanij, 2015. 328 s.
4.
№3-4, 2018
УДК 669.018.95
Bolshakova A.N.1, Efimochkin I.U.1, Dmitrieva V.V.1, Burkovskay N.P.1
DISPERSION-STRENGTHENED COMPOSITION MATERIALS BASED ON MOLYBDENUM (review)
The present review describes fabrication, applying and reinforced of refractory compounds of dispersion-strengthened composition materials based on molybdenum. The most effective method to obtain dispersion-strengthened composite materials is powder metallurgy. It is shown that improvement of mechanical properties and heat resistance of metal matrix composition materials based on molybdenum can be achieved by introduction of dopants to matrix material and by using of combination of strengthening particles of intermetallide compounds (silicides) and as well as oxides of refractory compounds.
Keywords: composition materials, dispersion strengthening, mechanical alloying, powder metallurgy.
Reference List
1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their pro-cessing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
2. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
3. Kablov E.N., Tolorajya V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii litya monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTE and GTU] // Aviacionnye materialy i tehnologii. 2012. №S. S. 105–117.
4. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlja lopatok s napravlen-noj i monokristallicheskoj strukturoj (chast I) [Nickel hot strength alloys for blades with the directed and single-crystal structure (part I)] // Materialovedenie. 1997. №4. S. 32−39.
5. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
6. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Vysokotemperaturnye intermetallidnye splavy dlya detaley GTD [The high-temperature intermetallic alloys for parts of gas-turbine engines] // Aviacionnye materialy i tehnologii. 2013. №3. S. 26–31.
7. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: February 02, 2018).
8. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: February 02, 2018).
9. Kablov E.N., Shchetanov B.V., Shavnev A.A. i dr. Svojstva i primenenie vysokonapolnennogo metallomatrichnogo kompozitsionnogo materiala Al–SiC [Properties and application of the high-filled metalmatrix Al–SIC composite material] // Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2011. №3–1. S. 56–59.
10. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennykh zharoprochnykh materialov i tekhnologii ikh proizvodstva dlia aviatsionnogo dvigatelestroeniia [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
11. Babich B.N., Vershinina E.V., Glebov V.A. i dr. Metallicheskie poroshki i poroshkovye materialy: spravochnik [Metal powders and powder materials: directory]. M.: EKOMET, 2005. 520 s.
12. Ivanov D.A., Sitnikov A.I., Shlyapin S.D. Dispersnouprochnennye voloknistye i sloistye neorganicheskie kompozitsionnye materialy: ucheb. posobie [Dispersnouprochnennye fibrous and layered inorganic composite materials: manual]. M.: MGIU, 2010. 230 s.
13. Ilyushchenko A.F. 50 let poroshkovoj metallurgii Belarusi. Istoriya, dostizheniya, perspektivy [50 years of powder metallurgy of Belarus. History, achievements, perspectives]. Minsk, 2010. S. 127–150.
14. Novikov I.I. Teoriya termicheskoj obrabotki metallov: uchebnik [Theory of thermal processing of metals: textbook]. 3-e izd., ispr. i dop. M.: Metallurgiya, 1978. 392 s.
15. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
16. Estrin B.M. Proizvodstvo i primenenie kontroliruemyh atmosfer pri termicheskoj obrabotke stali [Production and application of the controlled atmospheres at thermal steel working]. 2-e izd. pererab. i dop. M.: Metallurgiya, 1973. 392 s.
17. In-situ compounding process of preparing silicon carbide particle reinforced molybdenum silicide based composite material: pat. 1344810 CN; publ. 17.04.02.
18. Perepezko J.H., Sakidja R., Kim S. Phase Stability in Processing and Microstructure Control in High Temperature Mo–Si–B Alloys // MRS Symposium Proceedings. 2001. Vol. 646. No. 4–5. P. 1–12.
19. Method for enhancing the oxidation resistance of a molybdenum alloy, and a method of making a molybdenum alloy: pat. 5595616 US; publ. 21.01.97.
20. Oxidation resistant molybdenum alloy: pat. 5693156 US; publ. 02.12.97.
21. Rosales I., Schneibel J.H. Stoichiometry and Mechanical Properties of Mo3Si // Intermetallics. 2000. Vol. 8. P. 885–889.
22. Oxidation resistant coatings for molybdenum silicide-based composite articles: pat. 6497968 US; publ. 24.12.02.
23. Oxidation resistant coatings for molybdenum silicide-based composite articles: pat. 7622150 US; publ. 24.11.09.
24. Manufacturing method of Mo–Si–B alloy with high oxidation resistance and product of Mo–Si–B alloy by using the same: pat. 20100106160 KR; publ. 08.05.12.
25. Drawin S. The European ULTMAT Project: Properties of New Mo and Nb Silicide Based Materials // MRS Symposium Proceedings. 2009. Vol. 1128. Paper 1128-U07-11. P. 1–6.
26. Mo–Si–B–W multi-phase composite material and preparation method thereof: pat. 102424928 CN; publ. 25.04.12.
27. Mo–Si–B-based alloy powder, raw metal material powder, and method for producing Mo–Si–B-based alloy powder: pat. 2013099791 WO; publ. 04.07.13
28. High temperature melting molybdenum-chromium-silicon alloys: pat. 5683524 US; publ. 04.11.97.
29. Ods Molybdenum-Silicon-Boron alloy: pat. 1664362 EP; publ. 01.02.12.
30. Process for the production of a molybdenum alloy: pat. 007187 U1 AT; publ. 25.11.04.
31. Molybden silicide material with high strength: pat. 9904170 SE; publ. 11.12.00.
32. Molybdenum silicide composite material: pat. 20110240911 US; publ. 06.10. 11.
33. Tretyakov V.I. Osnovy metallovedeniya i tekhnologiya proizvodstva spechennyh tverdyh splavov [Bases of metallurgical science and production technology of sintered hard alloys]. M.: Metallurgiya, 1976. 528 s.
34. Novikov I.I., Zolotorevskij V.S., Portnoj V.K. i dr. Metallovedenie: uchebnik v 2-h t. [Metallurgical science: the textbook in 2 vol.]. M.: Izd. dom MISiS, 2009. T. 1. 496 s.
35. ZHukov L.L., Plemyannikova I.M., Mironova M.N. Splavy dlya nagrevatelej [Alloys for heaters]. M.: Metallurgiya, 1985. 144 s.
36. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlya lit'ya lopatok s napravlennoj i monokristallicheskoj strukturoj. Ch. II [Nickel hot strength alloys for molding of blades with the directed and single-crystal structure. Р. II] // Materialovedenie. 1997. №5. S. 14–16.
37. Buntushkin V.P., Kablov E.N., Bazyleva O.A., Morozova G.I. Splavy na osnove alyuminidov nikelya [Alloys on the basis of nickel aluminides] // MiTOM. 1999. №1. S. 32–34.
2. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
3. Kablov E.N., Tolorajya V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii litya monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTE and GTU] // Aviacionnye materialy i tehnologii. 2012. №S. S. 105–117.
4. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlja lopatok s napravlen-noj i monokristallicheskoj strukturoj (chast I) [Nickel hot strength alloys for blades with the directed and single-crystal structure (part I)] // Materialovedenie. 1997. №4. S. 32−39.
5. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
6. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Vysokotemperaturnye intermetallidnye splavy dlya detaley GTD [The high-temperature intermetallic alloys for parts of gas-turbine engines] // Aviacionnye materialy i tehnologii. 2013. №3. S. 26–31.
7. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: February 02, 2018).
8. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: February 02, 2018).
9. Kablov E.N., Shchetanov B.V., Shavnev A.A. i dr. Svojstva i primenenie vysokonapolnennogo metallomatrichnogo kompozitsionnogo materiala Al–SiC [Properties and application of the high-filled metalmatrix Al–SIC composite material] // Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2011. №3–1. S. 56–59.
10. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennykh zharoprochnykh materialov i tekhnologii ikh proizvodstva dlia aviatsionnogo dvigatelestroeniia [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
11. Babich B.N., Vershinina E.V., Glebov V.A. i dr. Metallicheskie poroshki i poroshkovye materialy: spravochnik [Metal powders and powder materials: directory]. M.: EKOMET, 2005. 520 s.
12. Ivanov D.A., Sitnikov A.I., Shlyapin S.D. Dispersnouprochnennye voloknistye i sloistye neorganicheskie kompozitsionnye materialy: ucheb. posobie [Dispersnouprochnennye fibrous and layered inorganic composite materials: manual]. M.: MGIU, 2010. 230 s.
13. Ilyushchenko A.F. 50 let poroshkovoj metallurgii Belarusi. Istoriya, dostizheniya, perspektivy [50 years of powder metallurgy of Belarus. History, achievements, perspectives]. Minsk, 2010. S. 127–150.
14. Novikov I.I. Teoriya termicheskoj obrabotki metallov: uchebnik [Theory of thermal processing of metals: textbook]. 3-e izd., ispr. i dop. M.: Metallurgiya, 1978. 392 s.
15. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
16. Estrin B.M. Proizvodstvo i primenenie kontroliruemyh atmosfer pri termicheskoj obrabotke stali [Production and application of the controlled atmospheres at thermal steel working]. 2-e izd. pererab. i dop. M.: Metallurgiya, 1973. 392 s.
17. In-situ compounding process of preparing silicon carbide particle reinforced molybdenum silicide based composite material: pat. 1344810 CN; publ. 17.04.02.
18. Perepezko J.H., Sakidja R., Kim S. Phase Stability in Processing and Microstructure Control in High Temperature Mo–Si–B Alloys // MRS Symposium Proceedings. 2001. Vol. 646. No. 4–5. P. 1–12.
19. Method for enhancing the oxidation resistance of a molybdenum alloy, and a method of making a molybdenum alloy: pat. 5595616 US; publ. 21.01.97.
20. Oxidation resistant molybdenum alloy: pat. 5693156 US; publ. 02.12.97.
21. Rosales I., Schneibel J.H. Stoichiometry and Mechanical Properties of Mo3Si // Intermetallics. 2000. Vol. 8. P. 885–889.
22. Oxidation resistant coatings for molybdenum silicide-based composite articles: pat. 6497968 US; publ. 24.12.02.
23. Oxidation resistant coatings for molybdenum silicide-based composite articles: pat. 7622150 US; publ. 24.11.09.
24. Manufacturing method of Mo–Si–B alloy with high oxidation resistance and product of Mo–Si–B alloy by using the same: pat. 20100106160 KR; publ. 08.05.12.
25. Drawin S. The European ULTMAT Project: Properties of New Mo and Nb Silicide Based Materials // MRS Symposium Proceedings. 2009. Vol. 1128. Paper 1128-U07-11. P. 1–6.
26. Mo–Si–B–W multi-phase composite material and preparation method thereof: pat. 102424928 CN; publ. 25.04.12.
27. Mo–Si–B-based alloy powder, raw metal material powder, and method for producing Mo–Si–B-based alloy powder: pat. 2013099791 WO; publ. 04.07.13
28. High temperature melting molybdenum-chromium-silicon alloys: pat. 5683524 US; publ. 04.11.97.
29. Ods Molybdenum-Silicon-Boron alloy: pat. 1664362 EP; publ. 01.02.12.
30. Process for the production of a molybdenum alloy: pat. 007187 U1 AT; publ. 25.11.04.
31. Molybden silicide material with high strength: pat. 9904170 SE; publ. 11.12.00.
32. Molybdenum silicide composite material: pat. 20110240911 US; publ. 06.10. 11.
33. Tretyakov V.I. Osnovy metallovedeniya i tekhnologiya proizvodstva spechennyh tverdyh splavov [Bases of metallurgical science and production technology of sintered hard alloys]. M.: Metallurgiya, 1976. 528 s.
34. Novikov I.I., Zolotorevskij V.S., Portnoj V.K. i dr. Metallovedenie: uchebnik v 2-h t. [Metallurgical science: the textbook in 2 vol.]. M.: Izd. dom MISiS, 2009. T. 1. 496 s.
35. ZHukov L.L., Plemyannikova I.M., Mironova M.N. Splavy dlya nagrevatelej [Alloys for heaters]. M.: Metallurgiya, 1985. 144 s.
36. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlya lit'ya lopatok s napravlennoj i monokristallicheskoj strukturoj. Ch. II [Nickel hot strength alloys for molding of blades with the directed and single-crystal structure. Р. II] // Materialovedenie. 1997. №5. S. 14–16.
37. Buntushkin V.P., Kablov E.N., Bazyleva O.A., Morozova G.I. Splavy na osnove alyuminidov nikelya [Alloys on the basis of nickel aluminides] // MiTOM. 1999. №1. S. 32–34.
5.
№1-2, 2018
УДК 678.6
Ogmrcyan A.R.1, Guseva M.A.1
RESEARCH OF THE EFFECT OF MODIFIERS ON THE PROPERTIES OF AN EPOXYVINYLESTER COMPOSITION CURED BY THE RADICAL POLYMERIZATION MECHANISM
The possibility of replacing the imported resin in the composition of epoxyvinylether binders with domestic ones. A comparison of the properties of the domestic epoxy vinyl ester VES-BM and ester Derakane 470-300 (manufactured – by Ashland), as well as binders on their basis, is presented. The properties of binders are given, depending on the peroxides used in their composition. The results of tests carried out using differential scanning calorimetry, dynamomechanical analysis, and rheological investigation methods are shown. The results of studies on the modification of epoxyvinylether binders with isocyanate and diallyl phthalate are presented with a view to improving their properties.
Keywords: binder, epoxy vinyl ester resins, viscosity, peroxides, curing, thermomechanical studies, rheology.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Materialy novogo pokolenija [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
3. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokolenija, tehnologii ih sozdanija i pererabotki – osnova innovacij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylja Rodiny. 2016. №5. S. 8–18.
4. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: March 27, 2018). DOI 10.18577/2307-6046-2014-0-4-6-6.
5. Panina N.N., Kim M.A., Gurevich Ja.M., Grigor'ev M.M. i dr. Svjazujushhie dlja bezavtoklavnogo formovanija izdelij iz polimernyh kompozicionnyh materialov [Binding for bezavtoklavny formation of products from polymeric composite materials] // Klei. Germetiki. Tehnologii. №10. 2013. S. 18–27.
6. Kablov E.N., Chursova L.V., Babin A.N., Muhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnyh svjazujushhih dlja polimernyh kompozicionnyh materialov [Development of VIAM Federal State Unitary Enterprise in the field of molten binding for polymeric composite materials] // Polimernye materialy i tehnologii. 2016. T. 2. №2. S. 37–42.
7. Doneckij K.I., Hrulkov A.V. Principy «zelenoj himii» v perspektivnyh tehnologiyah izgotovleniya izdelij iz PKM [Principles of «green chemistry» in perspective manufacturing technologies of PCM articles] //Aviacionnye materialy i tehnologii. 2014. №S2. S. 24–28.
8. Kablov E.N., Chursova L.V., Lukina N.F., Kucevich K.E. i dr. Issledovanie jepoksidno-polisulfonovyh polimernyh sistem na osnove vysokoprochnyh kleev aviacionnogo naznachenija [Research of epoxy and polysulfonic polymeric systems on the basis of high-strength adhesives of aviation assignment] // Klei. Germetiki. Tehnologii. 2017. №3. S. 7–12.
9. Vorobev A. Polijefirnye smoly [Polyester resins] // Komponenty i tehnologii. 2003. №32. S. 182–185.
10. Bharat Dholakiya Unsaturated Polyester Resin for Specialty Applications // Polyester. InTech. 2012. Vol. 7. P. 400.
11. Gooch J.W. Vinyl Ester Resin // Encyclopedic Dictionary of Polymers. Springer Science+Business Media, LLC, 2011. P. 794.
12. Raskutin A.E. Strategiia razvitiia polimernykh kompozitsionnykh materialov [Development strategy of polymer composite materials] // Aviatsionnye materialy i tekhnologii. 2017. №S. S. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
13. Chursova L.V., Grebeneva T.A., Panina N.N., Cybin A.I. Svjazujushhie dlja polimernyh kompozicionnyh materialov stroitelnogo naznachenija [Binding for polymeric composite materials of construction assignment] // Vse materialy. Jenciklopedicheskij spravochnik. 2015. №8. S. 13–17.
14. Murashov V.V., Slyusarev M.V., Evdokimov A.A. Kontrol' kachestva obolochek arochnyh elementov nadzemnyh chastej opor bystrovozvodimyh mostovyh sooruzhenij iz PKM [Quality control of covers of arch elements of elevated parts of support of fast-erected bridge constructions from PСM] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 10. Available at: http://www.viam-works.ru (accessed: March 27, 2018). DOI: 10.18577/2307-6046-2016-0-7-10-10.
15 Mishkin S.I., Raskutin A.E., Evdokimov A.A., Gulyaev I.N. Tehnologii i osnovnye etapy stroitelstva pervogo v Rossii arochnogo mosta iz kompozicionnyh materialov [Technologies and the main stages of construction of the arch bridge first in Russia from composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №6 (54). St. 05. Available at: http://www.viam-works.ru (accessed: March 27, 2018). DOI: 10.18577/2307-6046-2017-0-6-5-5.
16. Ushakov A.E., Klenin Ju.G., Sorina T.G. i dr. Mostovye konstrukcii iz kompozitov [Bridge designs from composites] // Kompozity i nanostruktury. 2009. №3. S. 25–37.
17. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Polimernye kompozicionnye materialy konstrukcionnogo naznacheniya s funkcionalnymi svojstvami [Constructional polymer composites with functional properties] // Aviacionnye materialy i tehnologii. 2017. №S. S. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
2. Kablov E.N. Materialy novogo pokolenija [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
3. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokolenija, tehnologii ih sozdanija i pererabotki – osnova innovacij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylja Rodiny. 2016. №5. S. 8–18.
4. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: March 27, 2018). DOI 10.18577/2307-6046-2014-0-4-6-6.
5. Panina N.N., Kim M.A., Gurevich Ja.M., Grigor'ev M.M. i dr. Svjazujushhie dlja bezavtoklavnogo formovanija izdelij iz polimernyh kompozicionnyh materialov [Binding for bezavtoklavny formation of products from polymeric composite materials] // Klei. Germetiki. Tehnologii. №10. 2013. S. 18–27.
6. Kablov E.N., Chursova L.V., Babin A.N., Muhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnyh svjazujushhih dlja polimernyh kompozicionnyh materialov [Development of VIAM Federal State Unitary Enterprise in the field of molten binding for polymeric composite materials] // Polimernye materialy i tehnologii. 2016. T. 2. №2. S. 37–42.
7. Doneckij K.I., Hrulkov A.V. Principy «zelenoj himii» v perspektivnyh tehnologiyah izgotovleniya izdelij iz PKM [Principles of «green chemistry» in perspective manufacturing technologies of PCM articles] //Aviacionnye materialy i tehnologii. 2014. №S2. S. 24–28.
8. Kablov E.N., Chursova L.V., Lukina N.F., Kucevich K.E. i dr. Issledovanie jepoksidno-polisulfonovyh polimernyh sistem na osnove vysokoprochnyh kleev aviacionnogo naznachenija [Research of epoxy and polysulfonic polymeric systems on the basis of high-strength adhesives of aviation assignment] // Klei. Germetiki. Tehnologii. 2017. №3. S. 7–12.
9. Vorobev A. Polijefirnye smoly [Polyester resins] // Komponenty i tehnologii. 2003. №32. S. 182–185.
10. Bharat Dholakiya Unsaturated Polyester Resin for Specialty Applications // Polyester. InTech. 2012. Vol. 7. P. 400.
11. Gooch J.W. Vinyl Ester Resin // Encyclopedic Dictionary of Polymers. Springer Science+Business Media, LLC, 2011. P. 794.
12. Raskutin A.E. Strategiia razvitiia polimernykh kompozitsionnykh materialov [Development strategy of polymer composite materials] // Aviatsionnye materialy i tekhnologii. 2017. №S. S. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
13. Chursova L.V., Grebeneva T.A., Panina N.N., Cybin A.I. Svjazujushhie dlja polimernyh kompozicionnyh materialov stroitelnogo naznachenija [Binding for polymeric composite materials of construction assignment] // Vse materialy. Jenciklopedicheskij spravochnik. 2015. №8. S. 13–17.
14. Murashov V.V., Slyusarev M.V., Evdokimov A.A. Kontrol' kachestva obolochek arochnyh elementov nadzemnyh chastej opor bystrovozvodimyh mostovyh sooruzhenij iz PKM [Quality control of covers of arch elements of elevated parts of support of fast-erected bridge constructions from PСM] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 10. Available at: http://www.viam-works.ru (accessed: March 27, 2018). DOI: 10.18577/2307-6046-2016-0-7-10-10.
15 Mishkin S.I., Raskutin A.E., Evdokimov A.A., Gulyaev I.N. Tehnologii i osnovnye etapy stroitelstva pervogo v Rossii arochnogo mosta iz kompozicionnyh materialov [Technologies and the main stages of construction of the arch bridge first in Russia from composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №6 (54). St. 05. Available at: http://www.viam-works.ru (accessed: March 27, 2018). DOI: 10.18577/2307-6046-2017-0-6-5-5.
16. Ushakov A.E., Klenin Ju.G., Sorina T.G. i dr. Mostovye konstrukcii iz kompozitov [Bridge designs from composites] // Kompozity i nanostruktury. 2009. №3. S. 25–37.
17. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Polimernye kompozicionnye materialy konstrukcionnogo naznacheniya s funkcionalnymi svojstvami [Constructional polymer composites with functional properties] // Aviacionnye materialy i tehnologii. 2017. №S. S. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
6.
№1-2, 2018
УДК 667.621
Petrova A.P.1, Lukina N.Ph.1, Kotova E.V.1, Melnikov D.A.1
ADHESIVE BINDERS FOR POLYMER AND LAYERED ALUMINIUMPOLYMER COMPOSITE MATERIALS
Here are physical and mechanical properties, rheological properties of adhesive binders of melting type. Here are next properties: tensile strength, bending strength, relative extension, fracture viscosity, glass transition temperature, modulus of elasticity under tension and bending. Shown the influence of selected technology for processing of binder to demands for rheological properties.
Keywords: binders, adhesive binders, strength of adhesive bonds, rheological properties, physic and mechanical properties, technology for processing of binder in Polymer Composite Materials.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Kontrol kachestva materialov – garantija bezopasnosti jekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
3. Anihovskaja L.I., Minakov V.T. Klei i kleevye prepregi dlja perspektivnyh izdelij aviakosmicheskoj tehniki [Glues and glue prepregs for perspective products of aerospace equipment] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002. M.: MISIS–VIAM, 2002. S. 315–326.
4. Kirienko T.A., Lukina N.F., Kucevich K.E., Petrova A.P. Issledovanie reologicheskih svojstv kleevyh svjazujushhih [Research of rheological properties of the glue binding] // Klei. Germetiki. Tehnologii. 2016. №2. S. 6–8.
5. Kablov E.N., Chursova L.V., Lukina N.F., Petrova A.P. Issledovanie jepoksidno-polisulfonovyh polimernyh sistem kak osnovy vysokoprochnyh kleev aviacionnogo naznachenija [Research of epoxy and polysulfonic polymeric systems as bases of high-strength adhesives of aviation assignment] // Klei. Germetiki. Tehnologii. 2017. №3. S. 7–12.
6. Dementeva L.A., Kucevich K.E., Lukina N.F., Petrova A.P. Ispolzovanie kleevyh svjazujushhih dlja poluchenija polimernyh kompozicionnyh materialov [Use of glue polymeric composite materials binding for receiving] // Novosti materialovedenija. Nauka i tehnika: jelektron. nauch.-tehnich. zhurn. 2016. №2 (20). S. 24–35 Available at: http://www.materialsnews.ru (accessed: February 8, 2018).
7. Melnikov D.A., Gromova A.A., Raskutin A.E., Kurnosov A.O. Teoreticheskij raschet i eksperimentalnoe opredelenie modulya uprugosti i prochnosti stekloplastika VPS-53/120 [Theoretical calculation and experimental determination of modulus of elasticity and strength of GRP VPS-53/120] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №1 (49). St. 08. Available at: http://www.viam-works.ru (accessed: February 8, 2018). DOI: 10.18577/2307-6046-2017-0-1-8-8.
8. Haskov M.A., Melnikov D.A., Dementeva L.A. Optimizacija rezhimov otverzhdenija jepoksidnyh kompozicij s uchetom masshtabnogo faktora [Optimization of modes of curing of epoxy compositions taking into account large-scale factor] // Sb. dokl. II Mezhdunar. nauch.-tehnich. konf. «Novye materialy i tehnologii glubokoj pererabotki syrja – osnova innovacionnogo razvitija jekonomiki Rossii». M.: VIAM, 2017. S. 30.
9. Lukina N.F., Dementeva L.A., Petrova A.P., Kirienko T.A., Chursova L.V. Kleevye svjazujushhie dlja detalej iz PKM sotovoj konstrukcii [Glue binding for details from PCM of cellular design] // Klei. Germetiki. Tehnologii. 2016. №5. S. 12–16.
10. Babin A.N., Petrova A.P. Metody ispytanij i issledovanij osnovnyh svojstv polimernyh svjazujushhih dlja konstrukcionnyh PKM [Test methods and researches of the main properties polymeric binding for constructional PCM] // Vse materialy. Jenciklopedicheskij spravochnik, 2016. №3. S. 52–59.
11. Kirienko T.A., Lukina N.F., Kutsevich K.E., Petrova A.P. A study of the rheological properties of adhesive binders // Polymer Science. D. 2016. T9. №3. P. 295–297.
12. Deev I.S., Kablov E.N., Kobets L.P., Chursova L.V. Issledovanie metodom skaniruyushhej elektronnoj mikroskopii deformacii mikrofazovoj struktury polimernyh matric pri mehanicheskom nagruzhenii [Research of the scanning electron microscopy method defor-mation of microphase structure of polymeric matrix at mechanical loading] // Trudy VIAM: elektron. nauch-tehnich. zhurn. 2014. №7. St. 06. Available at: http://www.viam-works.ru (accessed: February 8, 2018). DOI: 10.18577/2307-6046-2014-0-7-6-6.
13. Sharova I.A., Petrova A.P. Obzor po materialam mezhdunarodnoj konferencii po kleyam i germetikam (WAC-2012, Franciya) [Review of world adhesive and sealant conference (WAC-2012, France] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 06. Available at: http://www.viam-works.ru (accessed: February 8, 2018).
14. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
15. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
16. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. Kleevye svjazujushhie dlja polimernyh kompozicionnyh materialov na ugle- i steklonapolniteljah [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: February 8, 2018). DOI: 10.18577/2307-6046-2015-0-9-11-11.
17. Lukina N.F., Dementeva L.A., Serezhenkov A.A., Kotova E.V., Senatorova O.G., Sidel'nikov V.V., Kucevich K.E. Kleevye prepregi i kompozicionnye materialy na ih osnove [Glue prepregs and composite materials on their basis] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 53–56.
18. Lukina N.F., Kotova E.V., Chursova L.V., Kirienko T.A. Kleevye svjazujushhie dlja aljumo-polimernyh kompozicionnyh materialov [Glue binding for alyumo-polymeric composite materials] // Klei. Germetiki. Tehnologii. 2016. №4. S. 15–19.
2. Kablov E.N. Kontrol kachestva materialov – garantija bezopasnosti jekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
3. Anihovskaja L.I., Minakov V.T. Klei i kleevye prepregi dlja perspektivnyh izdelij aviakosmicheskoj tehniki [Glues and glue prepregs for perspective products of aerospace equipment] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002. M.: MISIS–VIAM, 2002. S. 315–326.
4. Kirienko T.A., Lukina N.F., Kucevich K.E., Petrova A.P. Issledovanie reologicheskih svojstv kleevyh svjazujushhih [Research of rheological properties of the glue binding] // Klei. Germetiki. Tehnologii. 2016. №2. S. 6–8.
5. Kablov E.N., Chursova L.V., Lukina N.F., Petrova A.P. Issledovanie jepoksidno-polisulfonovyh polimernyh sistem kak osnovy vysokoprochnyh kleev aviacionnogo naznachenija [Research of epoxy and polysulfonic polymeric systems as bases of high-strength adhesives of aviation assignment] // Klei. Germetiki. Tehnologii. 2017. №3. S. 7–12.
6. Dementeva L.A., Kucevich K.E., Lukina N.F., Petrova A.P. Ispolzovanie kleevyh svjazujushhih dlja poluchenija polimernyh kompozicionnyh materialov [Use of glue polymeric composite materials binding for receiving] // Novosti materialovedenija. Nauka i tehnika: jelektron. nauch.-tehnich. zhurn. 2016. №2 (20). S. 24–35 Available at: http://www.materialsnews.ru (accessed: February 8, 2018).
7. Melnikov D.A., Gromova A.A., Raskutin A.E., Kurnosov A.O. Teoreticheskij raschet i eksperimentalnoe opredelenie modulya uprugosti i prochnosti stekloplastika VPS-53/120 [Theoretical calculation and experimental determination of modulus of elasticity and strength of GRP VPS-53/120] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №1 (49). St. 08. Available at: http://www.viam-works.ru (accessed: February 8, 2018). DOI: 10.18577/2307-6046-2017-0-1-8-8.
8. Haskov M.A., Melnikov D.A., Dementeva L.A. Optimizacija rezhimov otverzhdenija jepoksidnyh kompozicij s uchetom masshtabnogo faktora [Optimization of modes of curing of epoxy compositions taking into account large-scale factor] // Sb. dokl. II Mezhdunar. nauch.-tehnich. konf. «Novye materialy i tehnologii glubokoj pererabotki syrja – osnova innovacionnogo razvitija jekonomiki Rossii». M.: VIAM, 2017. S. 30.
9. Lukina N.F., Dementeva L.A., Petrova A.P., Kirienko T.A., Chursova L.V. Kleevye svjazujushhie dlja detalej iz PKM sotovoj konstrukcii [Glue binding for details from PCM of cellular design] // Klei. Germetiki. Tehnologii. 2016. №5. S. 12–16.
10. Babin A.N., Petrova A.P. Metody ispytanij i issledovanij osnovnyh svojstv polimernyh svjazujushhih dlja konstrukcionnyh PKM [Test methods and researches of the main properties polymeric binding for constructional PCM] // Vse materialy. Jenciklopedicheskij spravochnik, 2016. №3. S. 52–59.
11. Kirienko T.A., Lukina N.F., Kutsevich K.E., Petrova A.P. A study of the rheological properties of adhesive binders // Polymer Science. D. 2016. T9. №3. P. 295–297.
12. Deev I.S., Kablov E.N., Kobets L.P., Chursova L.V. Issledovanie metodom skaniruyushhej elektronnoj mikroskopii deformacii mikrofazovoj struktury polimernyh matric pri mehanicheskom nagruzhenii [Research of the scanning electron microscopy method defor-mation of microphase structure of polymeric matrix at mechanical loading] // Trudy VIAM: elektron. nauch-tehnich. zhurn. 2014. №7. St. 06. Available at: http://www.viam-works.ru (accessed: February 8, 2018). DOI: 10.18577/2307-6046-2014-0-7-6-6.
13. Sharova I.A., Petrova A.P. Obzor po materialam mezhdunarodnoj konferencii po kleyam i germetikam (WAC-2012, Franciya) [Review of world adhesive and sealant conference (WAC-2012, France] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 06. Available at: http://www.viam-works.ru (accessed: February 8, 2018).
14. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
15. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
16. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. Kleevye svjazujushhie dlja polimernyh kompozicionnyh materialov na ugle- i steklonapolniteljah [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: February 8, 2018). DOI: 10.18577/2307-6046-2015-0-9-11-11.
17. Lukina N.F., Dementeva L.A., Serezhenkov A.A., Kotova E.V., Senatorova O.G., Sidel'nikov V.V., Kucevich K.E. Kleevye prepregi i kompozicionnye materialy na ih osnove [Glue prepregs and composite materials on their basis] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 53–56.
18. Lukina N.F., Kotova E.V., Chursova L.V., Kirienko T.A. Kleevye svjazujushhie dlja aljumo-polimernyh kompozicionnyh materialov [Glue binding for alyumo-polymeric composite materials] // Klei. Germetiki. Tehnologii. 2016. №4. S. 15–19.
7.
№5-6, 2017
УДК 620.1:678.8
Makhsidov V.V.1, Mukhametov R.R.1
AN EFFECT OF FIBRE OPTIC COATING ON PRECISION OF MATERIAL’S STRAIN MEASUREMENT WITH EMBEDDED FIBRE BRAGG GRATING
Due to advantages fibre optic sensors based on Bragg grating (FBG) begin wider and wider apply for measurement systems in some industry. Furthermore, possibilities of using FBG for structural health monitoring especially for aviation structural elements are estimated. Integrating elements, for example fibre optic sensors, in composite material lead to occurrence of additional boundary. As a result there are occurrence structural inhomogeneity and decrease in strength, that is a reason for reduction in mechanical properties of composite. In this paper method of measurement axial deformation of carbon fibre reinforced plastic (CFRP) specimen with embedded FBG during tension was studied. Also an effect of fibre optic coating on precision of material’s strain measurement with embedded FBG are shown. This method allow measuring elongation of specimens with the same precision as strain gage or extensometer.
Keywords: fibre optic sensor, fibre Bragg grating, deformation, polymer matrix composite, fibre cladding, adhesion.
Reference List
1. Frolov A.S., Panin S.V. Otsenka parametrov vlagoperenosa ugleplastika aviacionnogo naznacheni ya na nachalnoj stadii naturnoj klimaticheskoj ekspozicii [Early stages of environmental degradation investigated by moisture transfer parameters of CFRP used for aerospace applications] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 08. Available at: http://www.viam-works.ru (accessed: November 8, 2017). DOI: 10.18577/2307-6046-2014-0-7-8-8.
2. Panin S.V., Startsev O.V., Krotov A.S. Diagnostika nachalnoj stadii klimaticheskogo stareniya PKM po izmeneniyu koefficienta diffuzii vlagi [Initial stage environmental degradation of the polymer matrix composites evaluated by Water diffusion coefficient] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2014. №7. St. 09. Available at: http://viam-works.ru (accessed: November 8, 2017). DOI: 10.18577/2307-6046-2014-0-7-9-9.
3. Kablov E.N. Shestoy tekhnologicheskiy uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
4. Dimitrienko Ju.I., Gubareva E.A., Sborshhikov S.V., Erasov V.S., Jakovlev N.O. Chislennoe modelirovanie i jeksperimental'noe issledovanie deformirovanija uprugoplasticheskih plastin pri smjatii [Numerical modeling and pilot study of deformation of elasto-plastic plates when crushing] // Matematicheskoe modelirovanie i chislennye metody. 2015. №1 (5). S. 67–82.
5. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Gulyaev I.N., Gunyaev G.M., Raskutin A.E. Polimernye kompozitsionnye materialy s funktsiyami adaptacii i diagnostiki sostoianiya [Polymeric composite materials with functions of adaptation and condition diagnostics] // Aviacionnye materialy i tehnologii. 2012. №S. S. 242–253.
8. Gulyaev I.N., Gunyaev G.M. Ispolzovanie nepreryvnyh armiruyushhih volokon v kachestve tenzorezistornyh sensornyh elementov [Use of continuous reinforcing fibers as strain gauge sensing elements] // Aviacionnye materialy i tehnologii. 2010. №2. S. 22–27.
9. Kablov E.N., Sivakov D.V., Gulyaev I.N., Sorokin K.V., Fedotov M.Yu., Goncharov V.A. Metody issledovaniya konstrukcionnyh kompozicionnyh materialov s integrirovannoj elektromehanicheskoj sistemoj [Methods of research of constructional composite materials with the integrated electromechanical system] //Aviacionnye materialy i tehnologii. 2010. №4. S. 17–20.
10. Vasilev S.A., Medvedkov I.O., Korolev I.G. i dr. Volokonnye reshetki pokazatelja prelomlenija i ih primenenie [Fiber grids of refraction index and their application] // Kvantovaja jelektronika. 2005. T. 35. №12. S. 1085–1103.
11. Sposob izmerenija deformacii konstrukcii iz kompozicionnogo materiala [Way of measurement of deformation of design from composite material]: pat. 2427795 Ros. Federacija; opubl. 03.12.09.
12. Kersey A.D., Davis M.A., Patrick H.J. et al. Fiber grating sensors // J. Lightwave Technol. 1997. Vol. 15. P. 1442–1463.
13. Takeda N. Fiber optic sensor-based SHM technologies for aerospace applications in Japan // Proc. SPIE 6933 «Smart Sensor Phenomena, Technology, Networks, and Systems». 2008.
14. Takeda N., Tajima N., Sakurai T., Kishi T. Recent advances in composite fuselage demonstration program for damage and health monitoring in Japan // Structural control and health monitoring. 2005. Vol. 12. R. 245–255.
15. Childers B.A., Froggatt M.E., Allison S.G. et al. Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure // Proc. SPIE 4332 «Smart Structures and Materials–2001»: Industrial and Commercial Applications of Smart Structures Technologies. 2001. R. 133–142.
16. Hill K.O., Meltz G. Fiber Bragg grating technology fundamentals and overview //J. Lightwave Technol. 1997. Vol. 15. P. 1263–1276.
17. Mahsidov V.V., Fedotov M.Ju., Shienok A.M., Zuev M.A. K voprosu ob integracii optovolokna v PKM i izmerenii deformacii materiala s pomoshhju volokonnyh brjeggovskih reshetok [To question of integration of optical fiber in PCM and measurement of deformation of material by means of fiber Bragg grids] // Mehanika kompozicionnyh materialov i konstrukcij. 2014. T. 20. №4. S. 568–584.
18. Mahsidov V.V., Jakovlev N.O., Ilichev A.V., Shienok A.M. Izmerenie deformacii ugleplastika s pomoshh'ju integrirovannyh v ego strukturu volokonnyh brjeggovskih reshetok [Deformation measurement ugleplastika by means of the fiber Bragg grids integrated into its structure] // Mehanika kompozicionnyh materialov i konstrukcij. 2015. T. 21. №3. S. 360–369.
19. Roberts S.S.J., Davidson R. Mechanical properties of composite materials containing embedded fiber-optic sensors // Proc. SPIE «Fiber Optic Smart Structures and Skins IV». 1991. DOI: 10.1117/12.50193.
20. Leduc D., Lecieux Y., Morvan P.-A., Lupi C. Architecture of optical fiber sensor for the simultaneous measurement of axial and radial strains // Smart Mater. Struct. 2013. Vol. 22. P. 9.
21. Bertholds A., Dandliker R. Determination of the individual strain-optic coefficients in single-mode optical fibers // J. Lightwave Technol. 1988. Vol. 6. P. 17–20.
2. Panin S.V., Startsev O.V., Krotov A.S. Diagnostika nachalnoj stadii klimaticheskogo stareniya PKM po izmeneniyu koefficienta diffuzii vlagi [Initial stage environmental degradation of the polymer matrix composites evaluated by Water diffusion coefficient] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2014. №7. St. 09. Available at: http://viam-works.ru (accessed: November 8, 2017). DOI: 10.18577/2307-6046-2014-0-7-9-9.
3. Kablov E.N. Shestoy tekhnologicheskiy uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
4. Dimitrienko Ju.I., Gubareva E.A., Sborshhikov S.V., Erasov V.S., Jakovlev N.O. Chislennoe modelirovanie i jeksperimental'noe issledovanie deformirovanija uprugoplasticheskih plastin pri smjatii [Numerical modeling and pilot study of deformation of elasto-plastic plates when crushing] // Matematicheskoe modelirovanie i chislennye metody. 2015. №1 (5). S. 67–82.
5. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Gulyaev I.N., Gunyaev G.M., Raskutin A.E. Polimernye kompozitsionnye materialy s funktsiyami adaptacii i diagnostiki sostoianiya [Polymeric composite materials with functions of adaptation and condition diagnostics] // Aviacionnye materialy i tehnologii. 2012. №S. S. 242–253.
8. Gulyaev I.N., Gunyaev G.M. Ispolzovanie nepreryvnyh armiruyushhih volokon v kachestve tenzorezistornyh sensornyh elementov [Use of continuous reinforcing fibers as strain gauge sensing elements] // Aviacionnye materialy i tehnologii. 2010. №2. S. 22–27.
9. Kablov E.N., Sivakov D.V., Gulyaev I.N., Sorokin K.V., Fedotov M.Yu., Goncharov V.A. Metody issledovaniya konstrukcionnyh kompozicionnyh materialov s integrirovannoj elektromehanicheskoj sistemoj [Methods of research of constructional composite materials with the integrated electromechanical system] //Aviacionnye materialy i tehnologii. 2010. №4. S. 17–20.
10. Vasilev S.A., Medvedkov I.O., Korolev I.G. i dr. Volokonnye reshetki pokazatelja prelomlenija i ih primenenie [Fiber grids of refraction index and their application] // Kvantovaja jelektronika. 2005. T. 35. №12. S. 1085–1103.
11. Sposob izmerenija deformacii konstrukcii iz kompozicionnogo materiala [Way of measurement of deformation of design from composite material]: pat. 2427795 Ros. Federacija; opubl. 03.12.09.
12. Kersey A.D., Davis M.A., Patrick H.J. et al. Fiber grating sensors // J. Lightwave Technol. 1997. Vol. 15. P. 1442–1463.
13. Takeda N. Fiber optic sensor-based SHM technologies for aerospace applications in Japan // Proc. SPIE 6933 «Smart Sensor Phenomena, Technology, Networks, and Systems». 2008.
14. Takeda N., Tajima N., Sakurai T., Kishi T. Recent advances in composite fuselage demonstration program for damage and health monitoring in Japan // Structural control and health monitoring. 2005. Vol. 12. R. 245–255.
15. Childers B.A., Froggatt M.E., Allison S.G. et al. Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure // Proc. SPIE 4332 «Smart Structures and Materials–2001»: Industrial and Commercial Applications of Smart Structures Technologies. 2001. R. 133–142.
16. Hill K.O., Meltz G. Fiber Bragg grating technology fundamentals and overview //J. Lightwave Technol. 1997. Vol. 15. P. 1263–1276.
17. Mahsidov V.V., Fedotov M.Ju., Shienok A.M., Zuev M.A. K voprosu ob integracii optovolokna v PKM i izmerenii deformacii materiala s pomoshhju volokonnyh brjeggovskih reshetok [To question of integration of optical fiber in PCM and measurement of deformation of material by means of fiber Bragg grids] // Mehanika kompozicionnyh materialov i konstrukcij. 2014. T. 20. №4. S. 568–584.
18. Mahsidov V.V., Jakovlev N.O., Ilichev A.V., Shienok A.M. Izmerenie deformacii ugleplastika s pomoshh'ju integrirovannyh v ego strukturu volokonnyh brjeggovskih reshetok [Deformation measurement ugleplastika by means of the fiber Bragg grids integrated into its structure] // Mehanika kompozicionnyh materialov i konstrukcij. 2015. T. 21. №3. S. 360–369.
19. Roberts S.S.J., Davidson R. Mechanical properties of composite materials containing embedded fiber-optic sensors // Proc. SPIE «Fiber Optic Smart Structures and Skins IV». 1991. DOI: 10.1117/12.50193.
20. Leduc D., Lecieux Y., Morvan P.-A., Lupi C. Architecture of optical fiber sensor for the simultaneous measurement of axial and radial strains // Smart Mater. Struct. 2013. Vol. 22. P. 9.
21. Bertholds A., Dandliker R. Determination of the individual strain-optic coefficients in single-mode optical fibers // J. Lightwave Technol. 1988. Vol. 6. P. 17–20.
8.
№5-6, 2017
УДК 620.1:678.8
Makhsidov V.V.1, Reznikov V.A.1
PROJECTS, AIMED TO DEVELOPMENT OF STRUCTURAL HEALTH MONITORING SYSTEM FOR CFRP STRUCTURES
Due to advantages fibre optic sensors base on bragg grating (FBG) begin wider and wider apply for measurement systems in some industry. Furthermore, possibilities of using FBG for remote structural health monitoring especially for aviation structural elements are estimated. In this paper method of measurement axial deformation of carbon fibre reinforced plastic (CFRP) specimen with embedded FBG during tension was studied. This method allow measuring elongation of specimens with the same precision as strain gage or extensometer. The method can apply for study of distribution of axial deformation in the CFRP specimen structure undergo to tension or compression. It is possible to use this method to measuring of axial deformation of structural elements based on CFRP which are capable to preliminary loading in operating range before operation.
Keywords: fibre optic sensor, fibre bragg grating, deformation, polymer matrix composite, CFRP, structural health monitoring.
Reference List
1. Kablov E.N. Aviatsionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossiyskoy akademii nauk. 2002. T. 72. №1. S. 3–12.
2. Kablov E.N. Shestoy tekhnologicheskiy uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Tehnologii utilizacii polimernyh kompozicionnyh materialov (obzor) [Recycling technologies of polymer composite materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 09. Available at: http://viam-works.ru (accessed: November 7, 2017). DOI: 10.18577/2307-6046-2015-0-8-9-9.
5. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
6. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. III. Znachimye faktory [Climatic aging of composite materials of aviation assignment. III. Significant factors] //Deformacija i razrushenie materialov. 2011. №1. S. 34–40.
7. Ilichev A.V., Raskutin A.E. Issledovanie vliyaniya koncentratora napryazhenij na napryazhenno-deformacionnoe sostoyanie ugleplastika metodom korrelyacii cifrovyh izobrazhenij [Research of stress concentrator influence on stress-strain state of carbon by digital images correlation method] // Aviacionnye materialy i tehnologii. 2014. №3. S. 62–66. DOI: 10.18577/2071-9140-2014-0-3-26-30.
8. Startsev V.O., Mahonkov A.Yu., Kotova E.A. Mehanicheskie svojstva i vlagostojkost' PKM s povrezhdeniyami [Mechanical properties and moisture resistance of PCM with damages] // Aviacionnye materialy i tehnologii. 2015. №S1 (38). S. 49–55. DOI: 10.18577/2071-9140-2015-0-S1-49-55.
9. Molent L., Agius J. Agile Military Aircraft // Encyclopedia of Structural Health Monitoring. John Wiley Sons, Ltd., 2009. P. 1–15.
10. Childers B.A., Froggatt M.E., Allison S.G. et al. Use of 3000 Bragg Grating Strain Sensors Distributed on Four Eight-Meter Optical Fibers During Static Load Tests of a Composite Structure // Proc. Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies, 2001. P. 133–142.
11. Vasilev S.A., Medvedkov I.O., Korolev I.G. i dr. Volokonnye reshetki pokazatelja prelomlenija i ih primenenie [Fiber grids of refraction index and their application] // Kvantovaja jelektronika. 2005. T. 35. №12. S. 1085–1103.
12. Sposob izmerenija deformacii konstrukcii iz kompozicionnogo materiala [Way of measurement of deformation of design from composite material]: pat. 2427795 Ros. Federacija; opubl. 03.12.09.
13. Takeda N., Tajima N., Sakurai T., Kishi T. Recent advances in composite fuselage demonstration program for damage and health monitoring in Japan // Structural control and health monitoring. 2005. Vol. 12. R. 245–255.
14. Mizutani T., Takeda N., Takeya H. On-board Strain Measurement of a Cryogenic Composite Tank Mounted on a Reusable Rocket using FBG Sensors // Structural Health Monitoring. 2006. Vol. 5. P. 205–214.
15. Adams C. HUMS Technology // Avionics Magazine. Available at: http://www.aviationtoday.com/av/military/HUMS-technology_76209.html#.VXbcJtLtlBc (accessed: November 7, 2017).
16. Proekt «SARISTU» [SARISTU project] – «Smart Intelligent Aircraft Structures»: ofic. sajt. Available at: www.saristu.eu (accessed: November 7, 2017).
17. Takeda N., Okabe Y., Kuwahara J., Kojima S., Ogisu T. Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing // Composites Science and Technology. 2005. Vol. 65. P. 2575–2587.
18. Takeda N. Fiber optic sensor-based SHM technologies for aerospace applications in Japan // Proc. SPIE 6933 «Smart Sensor Phenomena, Technology, Networks, and Systems». 2008. DOI: 10.1117/12.776838.
2. Kablov E.N. Shestoy tekhnologicheskiy uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Tehnologii utilizacii polimernyh kompozicionnyh materialov (obzor) [Recycling technologies of polymer composite materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 09. Available at: http://viam-works.ru (accessed: November 7, 2017). DOI: 10.18577/2307-6046-2015-0-8-9-9.
5. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
6. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. III. Znachimye faktory [Climatic aging of composite materials of aviation assignment. III. Significant factors] //Deformacija i razrushenie materialov. 2011. №1. S. 34–40.
7. Ilichev A.V., Raskutin A.E. Issledovanie vliyaniya koncentratora napryazhenij na napryazhenno-deformacionnoe sostoyanie ugleplastika metodom korrelyacii cifrovyh izobrazhenij [Research of stress concentrator influence on stress-strain state of carbon by digital images correlation method] // Aviacionnye materialy i tehnologii. 2014. №3. S. 62–66. DOI: 10.18577/2071-9140-2014-0-3-26-30.
8. Startsev V.O., Mahonkov A.Yu., Kotova E.A. Mehanicheskie svojstva i vlagostojkost' PKM s povrezhdeniyami [Mechanical properties and moisture resistance of PCM with damages] // Aviacionnye materialy i tehnologii. 2015. №S1 (38). S. 49–55. DOI: 10.18577/2071-9140-2015-0-S1-49-55.
9. Molent L., Agius J. Agile Military Aircraft // Encyclopedia of Structural Health Monitoring. John Wiley Sons, Ltd., 2009. P. 1–15.
10. Childers B.A., Froggatt M.E., Allison S.G. et al. Use of 3000 Bragg Grating Strain Sensors Distributed on Four Eight-Meter Optical Fibers During Static Load Tests of a Composite Structure // Proc. Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies, 2001. P. 133–142.
11. Vasilev S.A., Medvedkov I.O., Korolev I.G. i dr. Volokonnye reshetki pokazatelja prelomlenija i ih primenenie [Fiber grids of refraction index and their application] // Kvantovaja jelektronika. 2005. T. 35. №12. S. 1085–1103.
12. Sposob izmerenija deformacii konstrukcii iz kompozicionnogo materiala [Way of measurement of deformation of design from composite material]: pat. 2427795 Ros. Federacija; opubl. 03.12.09.
13. Takeda N., Tajima N., Sakurai T., Kishi T. Recent advances in composite fuselage demonstration program for damage and health monitoring in Japan // Structural control and health monitoring. 2005. Vol. 12. R. 245–255.
14. Mizutani T., Takeda N., Takeya H. On-board Strain Measurement of a Cryogenic Composite Tank Mounted on a Reusable Rocket using FBG Sensors // Structural Health Monitoring. 2006. Vol. 5. P. 205–214.
15. Adams C. HUMS Technology // Avionics Magazine. Available at: http://www.aviationtoday.com/av/military/HUMS-technology_76209.html#.VXbcJtLtlBc (accessed: November 7, 2017).
16. Proekt «SARISTU» [SARISTU project] – «Smart Intelligent Aircraft Structures»: ofic. sajt. Available at: www.saristu.eu (accessed: November 7, 2017).
17. Takeda N., Okabe Y., Kuwahara J., Kojima S., Ogisu T. Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing // Composites Science and Technology. 2005. Vol. 65. P. 2575–2587.
18. Takeda N. Fiber optic sensor-based SHM technologies for aerospace applications in Japan // Proc. SPIE 6933 «Smart Sensor Phenomena, Technology, Networks, and Systems». 2008. DOI: 10.1117/12.776838.
9.
№3-4, 2017
УДК 687.8:66.047.76
Doriomedov M.S.1, Zhelezina G.F.1
Russian aramic filler market
The article is devoted to the review of the Russian market of aramid fibers, as well as their use for the manufacture of products for various purposes and as reinforcing fillers of polymer composite materials. The properties of Russian and foreign aramid fibers are compared. The main producers and consumers of aramid fibers are presented, the estimated volumes of production
Keywords: аramid fibers, organoplastics, reinforcing fillers.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [In-novative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Sergeeva E.A., Kostina K.D. Analiz assortimenta aramidnyh volokon i ih svojstv [Analysis of the range of aramide fibers and their properties] // Vestnik Kazanskogo tehnologicheskogo universiteta. 2015. T. 18. №14. S. 124–125.
3. Global and China Aramid Fiber Industry Report, 2016–2020 // Global Information. URL: https://www.giiresearch.com/report/rinc320244-global-china-aramid-fiber-industry-report.html (дата обращения: 17.06.2017).
4. Global and China Aramid Fiber Industry Report, 2014–2017 // PR Newswire. URL: http://www.prnewswire.com/news-releases/global-and-china-aramid-fiber-industry-report-2014-2017-300018091.html (дата обращения: 17.06.2017).
5. Centr raskrytija korporativnoj informacii [Center of disclosure of corporate information]: [Jelektronnyj resurs]. Available at: http://www.e-disclosure.ru/portal/files.aspx?id=508&type=2 (accessed: June 17, 2017).
6. Kompanija OOO «NPP «Termoteks» [JSC NPP Termoteks company]: ofic. sajt. Available at: http://npptermoteks.ru/ (accessed: May 30, 2017).
7. Bronezhilety voennyh polegchajut pochti na tret [Bullet-proof vests of military will become easier almost on third] // Nazvanie sajta: [Jelektronnyj resurs]. Available at: http://izvestia.ru/news/632291 (accessed: July 01, 2017).
8. Shebanov S.M., Novikov I.K. Uvelichenie prochnostnyh harakteristik aramidnogo volokna Rusar pri jelektromagnitnoj obrabotke [Increase in strength characteristics of aramide fiber Rusar at electromagnetic processing] // Nauka i Mir. 2014. T. 1. №10. (14). S. 81–83.
9. Zhelezina G.F., Matveeva N.N. Konstrukcionnye organoplastiki [Constructional organoplasty] // Vse materialy. Jenciklopedicheskij spravochnik. 2007. №1. S. 11–12.
10. Zhelezina G.F., Matveeva N.N. Konstrukcionnye organoplastiki (okonchanie) [Constructional organoplasty (termination)] // Vse materialy. Jenciklopedicheskij spravochnik. 2007. №2. S. 2–4.
11. Zhelezina G.F. Konstrukcionnye i funkcionalnye organoplastiki novogo pokoleniya [Constructional and functional organoplastics of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 06. Available at: http://www.viam-works.ru (accessed: June 20, 2017).
12. Tihonov I.V., Chernyh T.E., Shijanova L.B. i dr. Aramidnye niti Rusar-NT i sfery ih primenenija [Aramide threads of Rusar-NT and sphere of their application] // Polimernye kompozicionnye materialy novogo pokolenija dlja grazhdanskih otraslej promyshlennosti: sb. dokl. nauch. konf. M.: VIAM, 2015. St. 02.
13. Zhelezina G.F., Vojnov S.I., Chernyh T.E., Chernyh K.Ju. Novye aramidnye volokna Rusar-NT dlja armirovanija konstrukcionnyh organoplastikov [New aramide fibers of Rusar-NT for reinforcing constructional organoplastikov] // Voprosy materialovedenija. 2015. №1 (81). S. 60–70.
14. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
15. Doriomedov M.S., Petrov A.V., Daskovskiy M.I., Skripachev S.Yu. Pererabotka armiruyushchikh napolniteley pri utilizatsii izdeliy iz PKM [Processing of reinforcing fillers at utilization of products from PCM] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №8. St. 12. Available at: http://www.viam-works.ru (accessed: March 02, 2017). DOI: 10.18577/2307-6046-2016-0-8-12-12.
16. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Zarubezhnyj opyt razvitiya proizvodstva izdelij s ispolzovaniem vtorichno pererabotannyh polimernyh kompozicionnyh materialov (obzor) [Foreign experience of manufacturing products using recycled polymer composites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 12. Available at: http://www.viam-works.ru (accessed: January 20, 2017). DOI: 10.18577/2307-6046-2015-0-12-12-12.
2. Sergeeva E.A., Kostina K.D. Analiz assortimenta aramidnyh volokon i ih svojstv [Analysis of the range of aramide fibers and their properties] // Vestnik Kazanskogo tehnologicheskogo universiteta. 2015. T. 18. №14. S. 124–125.
3. Global and China Aramid Fiber Industry Report, 2016–2020 // Global Information. URL: https://www.giiresearch.com/report/rinc320244-global-china-aramid-fiber-industry-report.html (дата обращения: 17.06.2017).
4. Global and China Aramid Fiber Industry Report, 2014–2017 // PR Newswire. URL: http://www.prnewswire.com/news-releases/global-and-china-aramid-fiber-industry-report-2014-2017-300018091.html (дата обращения: 17.06.2017).
5. Centr raskrytija korporativnoj informacii [Center of disclosure of corporate information]: [Jelektronnyj resurs]. Available at: http://www.e-disclosure.ru/portal/files.aspx?id=508&type=2 (accessed: June 17, 2017).
6. Kompanija OOO «NPP «Termoteks» [JSC NPP Termoteks company]: ofic. sajt. Available at: http://npptermoteks.ru/ (accessed: May 30, 2017).
7. Bronezhilety voennyh polegchajut pochti na tret [Bullet-proof vests of military will become easier almost on third] // Nazvanie sajta: [Jelektronnyj resurs]. Available at: http://izvestia.ru/news/632291 (accessed: July 01, 2017).
8. Shebanov S.M., Novikov I.K. Uvelichenie prochnostnyh harakteristik aramidnogo volokna Rusar pri jelektromagnitnoj obrabotke [Increase in strength characteristics of aramide fiber Rusar at electromagnetic processing] // Nauka i Mir. 2014. T. 1. №10. (14). S. 81–83.
9. Zhelezina G.F., Matveeva N.N. Konstrukcionnye organoplastiki [Constructional organoplasty] // Vse materialy. Jenciklopedicheskij spravochnik. 2007. №1. S. 11–12.
10. Zhelezina G.F., Matveeva N.N. Konstrukcionnye organoplastiki (okonchanie) [Constructional organoplasty (termination)] // Vse materialy. Jenciklopedicheskij spravochnik. 2007. №2. S. 2–4.
11. Zhelezina G.F. Konstrukcionnye i funkcionalnye organoplastiki novogo pokoleniya [Constructional and functional organoplastics of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 06. Available at: http://www.viam-works.ru (accessed: June 20, 2017).
12. Tihonov I.V., Chernyh T.E., Shijanova L.B. i dr. Aramidnye niti Rusar-NT i sfery ih primenenija [Aramide threads of Rusar-NT and sphere of their application] // Polimernye kompozicionnye materialy novogo pokolenija dlja grazhdanskih otraslej promyshlennosti: sb. dokl. nauch. konf. M.: VIAM, 2015. St. 02.
13. Zhelezina G.F., Vojnov S.I., Chernyh T.E., Chernyh K.Ju. Novye aramidnye volokna Rusar-NT dlja armirovanija konstrukcionnyh organoplastikov [New aramide fibers of Rusar-NT for reinforcing constructional organoplastikov] // Voprosy materialovedenija. 2015. №1 (81). S. 60–70.
14. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
15. Doriomedov M.S., Petrov A.V., Daskovskiy M.I., Skripachev S.Yu. Pererabotka armiruyushchikh napolniteley pri utilizatsii izdeliy iz PKM [Processing of reinforcing fillers at utilization of products from PCM] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №8. St. 12. Available at: http://www.viam-works.ru (accessed: March 02, 2017). DOI: 10.18577/2307-6046-2016-0-8-12-12.
16. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Zarubezhnyj opyt razvitiya proizvodstva izdelij s ispolzovaniem vtorichno pererabotannyh polimernyh kompozicionnyh materialov (obzor) [Foreign experience of manufacturing products using recycled polymer composites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 12. Available at: http://www.viam-works.ru (accessed: January 20, 2017). DOI: 10.18577/2307-6046-2015-0-12-12-12.
10.
№3-4, 2017
УДК 678.8
Doriomedov M.S.1, A.V. Hrulkov1
The use of pultrusion for receiving structural elements from composite materials
Currently abroad in the manufacture of structural elements of aircrafttional techniques use polymer composite materials, fabrication provided by pultrusion technology. A distinctive feature of this technology lies in the fact that the source component is of continuous filaments applied prepreg. The use of prepregs in the manufacture of elements of aviation constructions allows to reduce the complexity of manufacturing, including to improve the quality of the final product. Additionally, the porosity of the products does not exceed 1%, subject to the existing requirements meets the aircraft requirements.
Keywords: polymer composites, pultrusion, prepreg.
Reference List
1. Makuhin A.G., Syrovoj G.V., Ratushnjak A.Ju. Pultruzija, kak tehnologicheskij process izgo-tovlenija izdelij iz kompozicionnyh materialov [Pultrusion, as technological process of manufacturing of products of composite materials] // Progressivnye tehnologii i sistemy mashinostroenija. 2016. №1 (52). S. 99–106.
2. Ljahova L.G., Iodchik A.A. Analiz vozmozhnosti primenenija shpunta iz ul'trakompozitnyh materialov v gidrotehnicheskom stroitel'stve [The analysis of possibility of application of groove from ultracomposite materials in hydrotechnical construction] // Dalnij Vostok: problemy razvitija arhi-tekturno-stroitelnogo kompleksa. 2016. №1. S. 423–426.
3. Grigorev S.N., Krasnovskij A.N., Kvachev K.V. Propitka stekljannyh volokon v processe pultruzii polimernyh kompozicionnyh materialov [Impregnation of glass fibers in the course of pultrusion of polymeric composite materials] // Steklo i keramika. 2014. №12. S. 28–30.
4. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitelnyh konstrukcijah [Applying FRP in building structures] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 03. Available at: http://viam-works.ru (accessed: July 02, 2017)..
5. Kompanija AO «Pultruzionnye tehnologii» [JSC Pultruzionnye tekhnologii company]: ofic. sajt. Available at: http://www.pultrusion.su (accessed: June 17, 2017).
6. Kompanija OOO «NPP Centr Pultruzii» [JSC NPP Center Pultruzii company]: ofic. sajt. Available at: http://www.c-pult.ru (accessed: June 17, 2017).
7. Kompanija ZAO «Flotenk» [JSC Flotenk company]: ofic. sajt. Available at:http://www.flotenk.ru/ (accessed: June 17, 2017).
8. Zinovev V.S., Ovchinnikov I.G. Vozmozhnost primenenija kompozitnyh materialov pri iz-gotovlenii i montazhe peshehodnyh mostov [Possibility of application of composite materials when manufacturing and mounting pedestrian bridges] // Novye idei novogo veka: mater. mezhdunar. nauch. konf. FAD TOGU. 2013. T. 2. S. 278–284.
9. Kompanija JAMCO Corp. [JAMCO Corp. company]: ofic. sajt. Available at: https://www.jamco.co.jp/ja/index.html (accessed: June 17, 2017).
10. Novye polimernye kompozicionnye materialy i tehnologii: tehnologicheskaja platform [New polymeric composite materials and technologies: technological platform]: ofic. sajt. Available at: http://tppkm.viam.ru (accessed: June 17, 2017).
11. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12. Doriomedov M.S., Petrov A.V., Daskovskiy M.I., Skripachev S.Yu. Pererabotka armiruyushchikh napolniteley pri utilizatsii izdeliy iz PKM [Processing of reinforcing fillers at utilization of products from PCM] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №8. St. 12. Available at: http://www.viam-works.ru (accessed: July 02, 2017). DOI: 10.18577/2307-6046-2016-0-8-12-12.
13. Sevastjanov D.V., Doriomedov M.S., Daskovskij M.I., Skripachev S.Ju. Samoarmirovannye polimernye kompozity – klassifikacija, poluchenie, mehanicheskie svojstva i primenenie (obzor) [Single-polymer composites – classification, synthesis, mechanical properties and application (review)] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2017. №4 (52). St. 12. Available at: http://www.viam-works.ru (accessed: July 02, 2017). DOI: 10.18577/2307-6046-2017-0-4-12-12.
14. Kablov E.N. Sovremennye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
15. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
2. Ljahova L.G., Iodchik A.A. Analiz vozmozhnosti primenenija shpunta iz ul'trakompozitnyh materialov v gidrotehnicheskom stroitel'stve [The analysis of possibility of application of groove from ultracomposite materials in hydrotechnical construction] // Dalnij Vostok: problemy razvitija arhi-tekturno-stroitelnogo kompleksa. 2016. №1. S. 423–426.
3. Grigorev S.N., Krasnovskij A.N., Kvachev K.V. Propitka stekljannyh volokon v processe pultruzii polimernyh kompozicionnyh materialov [Impregnation of glass fibers in the course of pultrusion of polymeric composite materials] // Steklo i keramika. 2014. №12. S. 28–30.
4. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitelnyh konstrukcijah [Applying FRP in building structures] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 03. Available at: http://viam-works.ru (accessed: July 02, 2017)..
5. Kompanija AO «Pultruzionnye tehnologii» [JSC Pultruzionnye tekhnologii company]: ofic. sajt. Available at: http://www.pultrusion.su (accessed: June 17, 2017).
6. Kompanija OOO «NPP Centr Pultruzii» [JSC NPP Center Pultruzii company]: ofic. sajt. Available at: http://www.c-pult.ru (accessed: June 17, 2017).
7. Kompanija ZAO «Flotenk» [JSC Flotenk company]: ofic. sajt. Available at:http://www.flotenk.ru/ (accessed: June 17, 2017).
8. Zinovev V.S., Ovchinnikov I.G. Vozmozhnost primenenija kompozitnyh materialov pri iz-gotovlenii i montazhe peshehodnyh mostov [Possibility of application of composite materials when manufacturing and mounting pedestrian bridges] // Novye idei novogo veka: mater. mezhdunar. nauch. konf. FAD TOGU. 2013. T. 2. S. 278–284.
9. Kompanija JAMCO Corp. [JAMCO Corp. company]: ofic. sajt. Available at: https://www.jamco.co.jp/ja/index.html (accessed: June 17, 2017).
10. Novye polimernye kompozicionnye materialy i tehnologii: tehnologicheskaja platform [New polymeric composite materials and technologies: technological platform]: ofic. sajt. Available at: http://tppkm.viam.ru (accessed: June 17, 2017).
11. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12. Doriomedov M.S., Petrov A.V., Daskovskiy M.I., Skripachev S.Yu. Pererabotka armiruyushchikh napolniteley pri utilizatsii izdeliy iz PKM [Processing of reinforcing fillers at utilization of products from PCM] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №8. St. 12. Available at: http://www.viam-works.ru (accessed: July 02, 2017). DOI: 10.18577/2307-6046-2016-0-8-12-12.
13. Sevastjanov D.V., Doriomedov M.S., Daskovskij M.I., Skripachev S.Ju. Samoarmirovannye polimernye kompozity – klassifikacija, poluchenie, mehanicheskie svojstva i primenenie (obzor) [Single-polymer composites – classification, synthesis, mechanical properties and application (review)] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2017. №4 (52). St. 12. Available at: http://www.viam-works.ru (accessed: July 02, 2017). DOI: 10.18577/2307-6046-2017-0-4-12-12.
14. Kablov E.N. Sovremennye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
15. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
11.
№2, 2017
УДК 667.621
Chursova L.V.1, Tsybin A.I.1, Grebeneva T.A.1
Matrix for polymeric composite and functional materials.Previous experience, modern state, development prospects
In this work development trends of thermosetting matrix, including previous experience, modern state and development prospects are discussed. The basic requirements for modern matrix, their properties and applications are considered. New promising classes of matrix are presented.
The work is done according to the program of the implementation of a complex direction 13.1. «Binders for polymer and composite materials for construction and special purpose» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: epoxy matrix, polyester and vinylester matrix, heterocyclic matrix, phenol-formaldehyde matrix, organometallic and inorganic matrix, polyimides, benzoxazines.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Babin A. N. Svyazujushhie dlya polimernyh kompozicionnyh materialov novogo pokoleniya [Binding for polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: September 15, 2016).
3. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
4. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnykh svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Development of VIAM Federal State Unitary Enterprise in the field of molten binding for polymeric composite materials] // Polimernye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
5. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: September 15, 2016). DOI 10.18577/2307-6046-2014-0-4-6-6.
6. Babin A.N., Guseva M.A., Grebeneva T.A., Tkachuk A.I. Issledovanie reologicheskikh i strukturnykh kharakteristik epoksidnykh sviazuiushchikh, modifitsirovannykh poliizotsianatom [Study of the rheological and structural characteristics of the epoxy resins, modified by polyisocyanate] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №1. St. 11. Available at: http://www.viam-works.ru (accessed: September 15, 2016). DOI: 10.18577/2307-6046-2016-0-1-11-11.
7. Chursova L.V., Grebeneva T.A., Panina N.N., Tsybin A.I. Sviazuiushchie dlia polimernykh kompozitsionnykh materialov stroitelnogo naznacheniia [Binding for polymeric composite materials of construction assignment] // Vse materialy. Entsiklopedicheskii spravochnik. 2015. №8. S. 13–17.
8. Chursova L.V., Kim M.A., Panina N.N., Shvetsov E.P. Nanomodificirovannoe epoksidnoe svyazuyushhee dlya stroitelnoj industrii [Nanomodified epoxy binder for the construction industry] // Aviacionnye materialy i tehnologii. 2013. №1. S. 40–47.
9. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: September 15, 2016). DOI: 10.18577/2307-6046-2015-0-9-11-11.
10. Shimkin A.A., Ponomarenko S.A., Mukhametov R.R. Issledovanie protsessa otverzhdeniia diftalonitrilnogo sviazuiushchego [Research of process of curing of the diftalonitrilny binding] // Zhurnal prikladnoi khimii. 2016. T. 89. №2. S. 256–264.
11. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
12. Kablov E.N. Aviatsionnoe materialovedenie: itogi i perspektivy [Aviation materials science: re-sults and perspectives] // Vestnik Rossiyskoy akademii nauk. 2002. T. 72. №1. S. 3–12.
2. Babin A. N. Svyazujushhie dlya polimernyh kompozicionnyh materialov novogo pokoleniya [Binding for polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: September 15, 2016).
3. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
4. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnykh svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Development of VIAM Federal State Unitary Enterprise in the field of molten binding for polymeric composite materials] // Polimernye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
5. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: September 15, 2016). DOI 10.18577/2307-6046-2014-0-4-6-6.
6. Babin A.N., Guseva M.A., Grebeneva T.A., Tkachuk A.I. Issledovanie reologicheskikh i strukturnykh kharakteristik epoksidnykh sviazuiushchikh, modifitsirovannykh poliizotsianatom [Study of the rheological and structural characteristics of the epoxy resins, modified by polyisocyanate] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №1. St. 11. Available at: http://www.viam-works.ru (accessed: September 15, 2016). DOI: 10.18577/2307-6046-2016-0-1-11-11.
7. Chursova L.V., Grebeneva T.A., Panina N.N., Tsybin A.I. Sviazuiushchie dlia polimernykh kompozitsionnykh materialov stroitelnogo naznacheniia [Binding for polymeric composite materials of construction assignment] // Vse materialy. Entsiklopedicheskii spravochnik. 2015. №8. S. 13–17.
8. Chursova L.V., Kim M.A., Panina N.N., Shvetsov E.P. Nanomodificirovannoe epoksidnoe svyazuyushhee dlya stroitelnoj industrii [Nanomodified epoxy binder for the construction industry] // Aviacionnye materialy i tehnologii. 2013. №1. S. 40–47.
9. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: September 15, 2016). DOI: 10.18577/2307-6046-2015-0-9-11-11.
10. Shimkin A.A., Ponomarenko S.A., Mukhametov R.R. Issledovanie protsessa otverzhdeniia diftalonitrilnogo sviazuiushchego [Research of process of curing of the diftalonitrilny binding] // Zhurnal prikladnoi khimii. 2016. T. 89. №2. S. 256–264.
11. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
12. Kablov E.N. Aviatsionnoe materialovedenie: itogi i perspektivy [Aviation materials science: re-sults and perspectives] // Vestnik Rossiyskoy akademii nauk. 2002. T. 72. №1. S. 3–12.
12.
№2, 2017
УДК 667.6
Aleksashin V.M.1, Derkov D.S.1
The study of the kinetics curing and vapor permeability modified fluorine-containing oligomers and conformal coatings on their based
The present paper is applied an empirical approach in kinetic studies. For paint coatings a detailed studying of the reaction mechanism is less important than optimizing the process or determining the influence of various factors on its speed, and using empirical dependencies will make it possible to obtain numerical characteristics quickly and easily.
Thermo-analytical studies of the curing process of modified fluorine-containing oligomeric compositions and conformal coatings on their basis were carried out. The curing process of the varnish composition of VL-21 was investigated by differential scanning calorimetry. A two-stage scheme of the curing reaction of the VL-21 composition is shown. Diffusion permeability of polymer films is investigated.
Keywords: varnish compositions, fluorine-containing oligomers, conformal coatings, kinetics of curing, diffusion permeability.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Buznik V.M. Sostoianie otechestvennoi khimii ftorpolimerov i vozmozhnye perspektivy razvitiia [Condition of domestic chemistry of fluoropolymers and possible perspectives of development] // Ros. khim. zhurn. 2008. T. 52. № 3. S. 7–12.
3. Buznik V.M. Sverhgidrofobnye materialy na osnove ftorpolimerov [Superwaterproof materials on the basis of fluoropolymers] //Aviation materials and technologies] //Aviacionnye materialy i tehnologii. 2013. №1. S. 29–34.
4. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Kablov E.N. Aviatsionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviatsionnye materialy. Izbrannye trudy VIAM 1932–2002. M.: MISIS–VIAM. 2002. S. 23–47.
6. Nefedov N.I., Semenova L.V., Onosova L.A. Issledovanie protsessov otverzhdeniia ftorpolimernykh kompozitsii [Research of processes of curing of ftorpolimerny compositions] // Vse materialy. Entsiklopedicheskii spravochnik. 2013. №11. S. 23–27.
7. Nefedov N.I., Salikhov T.R., Melnikov D.A. Issledovanie protsessa otverzhdeniia ftorsoderzhashchikh oligomerov i konformnykh pokrytii na ikh osnove [Research of process of curing of fluorinated oligomers and conformal coverings on their basis] // Lakokrasochnye materialy i ikh primenenie. 2015. №1–2. S. 62–65.
8. Beider E.Ya., Donskoi A.A., Zhelezina G.F., Kondrashov E.K. et al. An experience of using fluoropolymer materials in aviation engineering // Russian Journal of General Chemistry. 2009. T. 79. №3. P. 548–564.
9. Antiufeeva N.V., Aleksashin V.M., Stoliankov Iu.V. Sovremennoe metodicheskoe obespechenie termoanaliticheskikh issledovanii polimernykh kompozitov i prepregov [Modern methodical ensuring thermoanalytical researches of polymeric composites and prepregs] // Kompozity i nanostruktury. 2014. T. 6. №3. S. 176–184.
10. ISO 11357-7:2002. Plastics-Differential scanning calorimetry (DSC). Part 7: Determination of crystallization kinetics.
11. Meng Z., Yang L., Geng W. et al. Kinetic Study on the Isothermal and Nonisothermal Crystallization of Monoglyceride Organogels // The Scientific World Journal. 2014. Vol. Article ID 149753. 7 p.
12. Zinet M., Refaa Z., Boutaous M. et al. Thermophysical Characterization and Crystallization Kinetics of Semi-Crystalline Polymers // Journal of Modern Physics. 2013. Vol. 4. P. 28–37.
13. Aleksashin V.M., Antiufeeva N.V. Razvitie metodov termicheskogo analiza v issledovaniiakh polimernykh kompozitsionnykh materialov [Development of methods of the thermal analysis in researches of polymeric composite materials] // Aviatsionnye materialy i tekhnologii. 2007. S. 245–249.
14. Kondrashov E.K. Sverkhtonkie vzaimodeistviia i diffuziia v polimerakh [Superthin interactions and diffusion in polymers]. M. Sputnik, 2004. S. 12–20.
15. Nefyodov N.I., Semyonova L.V. Tendencii razvitiya v oblasti konformnyh pokrytij dlya vlagozashhity i elektroizolyacii plat pechatnogo montazha i jelementov radiojelektronnoj apparatury [Development tendencies in the field on conformal coating for the moisture protection and electrical insulation of printed-circuit boards and electronic elements] // Aviacionnye materialy i tehnologii. 2013. №1. S. 50–52.
16. Semenova L.V., Kondrashov E.K. Modifitsirovannyi bromepoksidnyi lak VL-18 dlia zashchity polimernykh kompozitsionnykh materialov [The modified bromine epoxy varnish VL-18 for protection of polymeric composite materials] // Aviatsionnye materialy i tekhnologii. 2010. №1. S. 29–32.
17. Nefedov N.I., Kondrashov E.K., Semenova L.V., Lebedeva T.A. Erozionnostoikie pokrytiia dlia zashchity izdelii iz polimernykh kompozitsionnykh materialov [Erosion-resistant coatings for protection of articles from polymer composite materials] // Aviatsionnye materialy i tekhnologii. 2014. №S3. S. 25–27. DOI: 10.18577/2071-9140-2014-0-s3-25-27.
2. Buznik V.M. Sostoianie otechestvennoi khimii ftorpolimerov i vozmozhnye perspektivy razvitiia [Condition of domestic chemistry of fluoropolymers and possible perspectives of development] // Ros. khim. zhurn. 2008. T. 52. № 3. S. 7–12.
3. Buznik V.M. Sverhgidrofobnye materialy na osnove ftorpolimerov [Superwaterproof materials on the basis of fluoropolymers] //Aviation materials and technologies] //Aviacionnye materialy i tehnologii. 2013. №1. S. 29–34.
4. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Kablov E.N. Aviatsionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviatsionnye materialy. Izbrannye trudy VIAM 1932–2002. M.: MISIS–VIAM. 2002. S. 23–47.
6. Nefedov N.I., Semenova L.V., Onosova L.A. Issledovanie protsessov otverzhdeniia ftorpolimernykh kompozitsii [Research of processes of curing of ftorpolimerny compositions] // Vse materialy. Entsiklopedicheskii spravochnik. 2013. №11. S. 23–27.
7. Nefedov N.I., Salikhov T.R., Melnikov D.A. Issledovanie protsessa otverzhdeniia ftorsoderzhashchikh oligomerov i konformnykh pokrytii na ikh osnove [Research of process of curing of fluorinated oligomers and conformal coverings on their basis] // Lakokrasochnye materialy i ikh primenenie. 2015. №1–2. S. 62–65.
8. Beider E.Ya., Donskoi A.A., Zhelezina G.F., Kondrashov E.K. et al. An experience of using fluoropolymer materials in aviation engineering // Russian Journal of General Chemistry. 2009. T. 79. №3. P. 548–564.
9. Antiufeeva N.V., Aleksashin V.M., Stoliankov Iu.V. Sovremennoe metodicheskoe obespechenie termoanaliticheskikh issledovanii polimernykh kompozitov i prepregov [Modern methodical ensuring thermoanalytical researches of polymeric composites and prepregs] // Kompozity i nanostruktury. 2014. T. 6. №3. S. 176–184.
10. ISO 11357-7:2002. Plastics-Differential scanning calorimetry (DSC). Part 7: Determination of crystallization kinetics.
11. Meng Z., Yang L., Geng W. et al. Kinetic Study on the Isothermal and Nonisothermal Crystallization of Monoglyceride Organogels // The Scientific World Journal. 2014. Vol. Article ID 149753. 7 p.
12. Zinet M., Refaa Z., Boutaous M. et al. Thermophysical Characterization and Crystallization Kinetics of Semi-Crystalline Polymers // Journal of Modern Physics. 2013. Vol. 4. P. 28–37.
13. Aleksashin V.M., Antiufeeva N.V. Razvitie metodov termicheskogo analiza v issledovaniiakh polimernykh kompozitsionnykh materialov [Development of methods of the thermal analysis in researches of polymeric composite materials] // Aviatsionnye materialy i tekhnologii. 2007. S. 245–249.
14. Kondrashov E.K. Sverkhtonkie vzaimodeistviia i diffuziia v polimerakh [Superthin interactions and diffusion in polymers]. M. Sputnik, 2004. S. 12–20.
15. Nefyodov N.I., Semyonova L.V. Tendencii razvitiya v oblasti konformnyh pokrytij dlya vlagozashhity i elektroizolyacii plat pechatnogo montazha i jelementov radiojelektronnoj apparatury [Development tendencies in the field on conformal coating for the moisture protection and electrical insulation of printed-circuit boards and electronic elements] // Aviacionnye materialy i tehnologii. 2013. №1. S. 50–52.
16. Semenova L.V., Kondrashov E.K. Modifitsirovannyi bromepoksidnyi lak VL-18 dlia zashchity polimernykh kompozitsionnykh materialov [The modified bromine epoxy varnish VL-18 for protection of polymeric composite materials] // Aviatsionnye materialy i tekhnologii. 2010. №1. S. 29–32.
17. Nefedov N.I., Kondrashov E.K., Semenova L.V., Lebedeva T.A. Erozionnostoikie pokrytiia dlia zashchity izdelii iz polimernykh kompozitsionnykh materialov [Erosion-resistant coatings for protection of articles from polymer composite materials] // Aviatsionnye materialy i tekhnologii. 2014. №S3. S. 25–27. DOI: 10.18577/2071-9140-2014-0-s3-25-27.
13.
№1, 2017
УДК 678
Doriomedov M.S.1, Skripachev S.Y.1, A.V. Hrulkov1
Measures supporting composite industry in Germany
This article provides information on the measures supporting the composite industry in Germany. The information on ongoing government programs operating clusters, associations in the field of composite materials.
The work was executed within implementation of the complex scientific direction 13.1. «Binding for polymer and composite materials of constructional and special purpose» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: polymer composite material, support measures.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
3. Kablov E.N. Sovremennye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern mate-rials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
4. Kablov E.N. Aviatsionnoe materialovedenie: itogi i perspektivy [Aviation materials science: re-sults and perspectives] // Vestnik Rossiyskoy akademii nauk. 2002. T. 72. №1. S. 3–12.
5. Daskovskij M.I., Doriomedov M.S., Skripachev S.Yu. Sistematizaciya bazisnyh faktorov, prepyatstvuyushhih vnedreniyu polimernyh kompozicionnyh materialov v Rossii (obzor) [Underlying factors preventing the introduction of polymer composite materials in Russia (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5 St. 06. Available at: http://www.viam-works.ru (accessed: September 07, 2016). DOI: 10.18577/2307-6046-2016-0-5-6-6.
6. Doriomedov M.S., Daskovskij M.I., Skripachev S.Yu., Shein E.A. Polimernye kompozicionnye materialy v zheleznodorozhnom transporte Rossii (obzor) [Polymer composite materials in the Russian railways (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №07. St. 12. Available at: http://www.viam-works.ru (accessed: July 25, 2016). DOI: 10.18577/2307-6046-2016-0-7-12-12.
7. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Zarubezhnyj opyt razvitiya proizvodstva izdelij s ispolzovaniem vtorichno pererabotannyh polimernyh kompozicionnyh materialov (obzor) [Foreign experience of manufacturing products using recycled polymer composites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 12. Available at: http://www.viam-works.ru (accessed: February 01, 2016). DOI: 10.18577/2307-6046-2015-0-12-12-12.
8. Doriomedov M.S., Petrov A.V., Daskovskiy M.I., Skripachev S.Yu. Pererabotka armiruyushchikh napolniteley pri utilizatsii izdeliy iz PKM [Processing of reinforcing fillers at utilization of products from PCM] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №8. St. 12. Available at: http://www.viam-works.ru (accessed: November 18, 2016). DOI: 10.18577/2307-6046-2016-0-8-12-12.
9. Novaya strategiya razvitiya Germanii [New strategy of development of Germany] (Die Neue Hightech-Strategie Innovationen für Deutschland). Available at: http://www.hightech-strategie.de/index.php (accessed: April 15, 2016).
10. VIP+: Technologische und gesellschaftliche Innovationspotenziale erschließen. Available at: http://www. bmbf.de/de/vip-technologische-und-gesellschaftliche-innovationspotenziale-erschliessen-563.html (accessed: April 15, 2016).
11. O programme go-cluster [About the go-cluster program]. Available at: http://www.clusterplattform.de/CLUSTER/Navigation /DE/Bund/go-cluster/go-cluster.html (accessed: April 15, 2016).
12. Федеральное правительство Германии: офиц. Сайт [Federal government of Germany: ofitsa. site.]. Available at: http://www.foerderinfo.bund.de/ (accessed: April 15, 2016).
13. Federalnoe pravitelstvo Germanii: ofits. Sayt [Federal departments of Germany: ofitsa. site.]. Available at: http://foerderportal.bund.de/foekat /jsp/StartAction.do?actionMode=list (accessed: April 15, 2016).
14. Clusterplattform Deutschland. Available at: http://www.clusterplattform.de/ CLUS-TER/Navigation/DE/Home/home.html (accessed: April 15, 2016).
15. Podderzhka innovatsionnykh novykh materialov i nanotekhnologiy [Elektronnyy resurs] [Support of innovative new materials and nanotechnologies [Electronic resource]]. URL: http://www.werkstofftechnologien.de/ (accessed: April 15, 2016).
2. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
3. Kablov E.N. Sovremennye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern mate-rials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
4. Kablov E.N. Aviatsionnoe materialovedenie: itogi i perspektivy [Aviation materials science: re-sults and perspectives] // Vestnik Rossiyskoy akademii nauk. 2002. T. 72. №1. S. 3–12.
5. Daskovskij M.I., Doriomedov M.S., Skripachev S.Yu. Sistematizaciya bazisnyh faktorov, prepyatstvuyushhih vnedreniyu polimernyh kompozicionnyh materialov v Rossii (obzor) [Underlying factors preventing the introduction of polymer composite materials in Russia (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5 St. 06. Available at: http://www.viam-works.ru (accessed: September 07, 2016). DOI: 10.18577/2307-6046-2016-0-5-6-6.
6. Doriomedov M.S., Daskovskij M.I., Skripachev S.Yu., Shein E.A. Polimernye kompozicionnye materialy v zheleznodorozhnom transporte Rossii (obzor) [Polymer composite materials in the Russian railways (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №07. St. 12. Available at: http://www.viam-works.ru (accessed: July 25, 2016). DOI: 10.18577/2307-6046-2016-0-7-12-12.
7. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Zarubezhnyj opyt razvitiya proizvodstva izdelij s ispolzovaniem vtorichno pererabotannyh polimernyh kompozicionnyh materialov (obzor) [Foreign experience of manufacturing products using recycled polymer composites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 12. Available at: http://www.viam-works.ru (accessed: February 01, 2016). DOI: 10.18577/2307-6046-2015-0-12-12-12.
8. Doriomedov M.S., Petrov A.V., Daskovskiy M.I., Skripachev S.Yu. Pererabotka armiruyushchikh napolniteley pri utilizatsii izdeliy iz PKM [Processing of reinforcing fillers at utilization of products from PCM] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №8. St. 12. Available at: http://www.viam-works.ru (accessed: November 18, 2016). DOI: 10.18577/2307-6046-2016-0-8-12-12.
9. Novaya strategiya razvitiya Germanii [New strategy of development of Germany] (Die Neue Hightech-Strategie Innovationen für Deutschland). Available at: http://www.hightech-strategie.de/index.php (accessed: April 15, 2016).
10. VIP+: Technologische und gesellschaftliche Innovationspotenziale erschließen. Available at: http://www. bmbf.de/de/vip-technologische-und-gesellschaftliche-innovationspotenziale-erschliessen-563.html (accessed: April 15, 2016).
11. O programme go-cluster [About the go-cluster program]. Available at: http://www.clusterplattform.de/CLUSTER/Navigation /DE/Bund/go-cluster/go-cluster.html (accessed: April 15, 2016).
12. Федеральное правительство Германии: офиц. Сайт [Federal government of Germany: ofitsa. site.]. Available at: http://www.foerderinfo.bund.de/ (accessed: April 15, 2016).
13. Federalnoe pravitelstvo Germanii: ofits. Sayt [Federal departments of Germany: ofitsa. site.]. Available at: http://foerderportal.bund.de/foekat /jsp/StartAction.do?actionMode=list (accessed: April 15, 2016).
14. Clusterplattform Deutschland. Available at: http://www.clusterplattform.de/ CLUS-TER/Navigation/DE/Home/home.html (accessed: April 15, 2016).
15. Podderzhka innovatsionnykh novykh materialov i nanotekhnologiy [Elektronnyy resurs] [Support of innovative new materials and nanotechnologies [Electronic resource]]. URL: http://www.werkstofftechnologien.de/ (accessed: April 15, 2016).
14.
№1, 2017
УДК 678.8:629.12
Mishkin S.I.1, Doriomedov M.S.1, Kucherovskiy A.I.1
Polymer composite materials in the shipbuilding
Examples of application of polymeric composite materials (PCM) in the foreign and domestic shipbuilding. The main competitive advantages of composites on their implementation in the courts of sea and river transport. The recommendations for improving the use of composites in the shipbuilding industry. Importance of application of PСM in construction of the military ships for reduction of their radar detection is shown. Also in article the main are provided technology of formation PCM used in shipbuilding.
Keywords: polymer composite material, application, shipbuilding.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
3. Kablov E.N. Sovremennye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
4. Kostylev I. I., Ovsiannikov M. K. Zarubezhnoe sudostroenie. Sostoianie i tendentsii [Foreign shipbuilding. Condition and tendencies] // Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S.O. Makarova. 2013. №6 (22). C. 66–68.
5. Gumeniuk N. S., Grushin S. S. Primenenie kompozitnykh materialov v sudostroenii [Application of composite materials in shipbuilding] // Sovremennye naukoemkie tekhnologii. 2013. №8. C. 116–117.
6. Available at: http://ruyachts.com/journal/pervyie-foto-neveroyatnoy-super-yahtyi-khalilah-ot-palmer-johnson/ (accessed: April 25, 2016).
7. Available at: http://www.mby.com/news/toyota-28-composite-construction-51869 (accessed: April 25, 2016).
8. Strukturnyi adgeziv – Crestomer 1152PA, Scott Bader [Structural adhesive – Crestomer 1152PA, Scott Bader] // Kompozitnyi mir. 2014. №5. S. 34–36.
9. Available at: http://www.styrsobolaget.se/om-oss/fartyg (accessed: April 22, 2016).
10. Available at: http://www.arms-expo.ru/news/weapons_in_the_world/perspektivnye-avianoscy-i-podlodki-ssbn-x-okazalis-ssha-ne-po-karmanu17-07-2011-10-17-00/?sphrase_id=11093783 (accessed: April 25, 2016).
11. Neliub V.A. Primenenie polimernykh kompozitsionnykh materialov v sudostroenii dlia re-monta korabelnykh nadstroek [Application of polymeric composite materials in shipbuilding for repair of ship superstructures] // Remont, vosstanovlenie, modernizatsiia. 2013. №5. S. 21–24.
12. Kompozitnoe sudostroenie [Composite shipbuilding] // Morskaia politika Rossii. 2012. №2. S.42–43.
13. Gumeniuk N.S., Grushin S.S. Primenenie kompozitnykh materialov v sudostroenii [Application of composite materials in shipbuilding] // Sovremennye naukoemkie tekhnologii. 2013. №8. S. 116–117.
14. Volzhskaia premera Vympel [Volga premiere of Vympel] // Katera i iakhty. 2014. №5 (251). S. 50–53.
15. Available at: http://www.sdelanounas.ru/blogs/60097/ (accessed: April 22, 2016).
16. Kompozitnye suda dlia rossiiskogo sudokhodstva [Composite vessels for the Russian navigation] // Morskaia politika Rossii. 2012. №2. S. 52–53.
17. Available at: http://rus-shipping.ru/ru/shipbuilding/news/?id=7958 (accessed: April 22, 2016).
18. Sirius 25: luchshii kater – 2015 po versii MBS [Sirius 25: the best boat – 2015 according to the MBS version] // Katera i iakhty. 2015. №3 (255). S. 34–35.
19. Available at: http://evolmotors.ru (accessed: April 22, 2016).
20. Available at: http://mg-boat.ru (accessed: April 22, 2016).
21 Available at: http://n-moto.ru/ishop/brand/55 (accessed: April 22, 2016).
22. Available at: http://agnc.ru/news/7565 (accessed: April 29, 2016).
23. Available at: http://tppkm.viam.ru/ (accessed: April 29, 2016).
24. Available at: http://tass.ru/armiya-i-opk/2690570 (accessed: April 20, 2016).
25. Balchiunas A. S. Kratkii obzor ispolzovaniia kompozitsionnykh materialov pri stroitelstve korablei i elementov ikh konstruktsii [The short overview of use of composite materials at construction of the ships and elements of their designs] // Nauchnye issledovaniia: ot teorii k praktike: mater. VII Mezhdunar. nauch.-prakt. konf. (Cheboksary, 13 mart 2016 g.). Cheboksary: Interaktiv plius, 2016. №1 (7). S. 146–147.
26. Available at: http://www.hccomposite.com/upload/iblock/3be/3be96be19ed64e5ff247bd976d74f0c6.pdf (accessed: April 25, 2016).
27. «Pakhari moria» na sluzhbe Rossii [«Plowmen of the sea» on service of Russia] // Vesti morskogo Peterburga. 2015. №2. S. 40–42.
28. Available at: http://almaz-kb.ru/rus/public/doc_01.pdf (accessed: April 10, 2016).
29. Available at: http://www.sdelanounas.ru/blogs/57786/ (accessed: April 20, 2016).
30. Available at: http://www.arms-ekhpo.ru/news/predpriyatiya/sredne_nevskiy_sudostroitelnyy_zavod_nachal
_shvartovye_ispytaniya_reydovogo_tralshchika_proekta_1075/ (accessed: April 15, 2016).
31. Sukhanova A. Obraztsovo-pokazatelnoe osvoenie Fibersim v OAO «Sredne-Nevskii sudo-stroitelnyi zavod» [Model development of Fibersim in JSC Sredne-Nevsky sudostroitelny zavod] // CAD/CAM/CAE Observer. 2013. Vol. 2 (78). P. 8–21. Available at: http://www.cadcamcae.lv/hot/Interview_Seredokho_n78_p8.pdf
32. Seredokho V.A. Sredne-Nevskii sudostroitelnyi zavod – 100 let traditsii i innovatsii [The average and Nevsky shipbuilding plant – 100 years of traditions and innovations] // Promyshlennaia politika v Rossiiskoi Federatsii. 2013. № 4/6. S. 8–13.
33. Available at: http://www.arms-ekhpo.ru/news/novye_razrabotki/kompozitnye_apl_vooruzhat_giperzvukovymi
_raketami_/?sphrase_id=11087985 (accessed: April 15, 2016).
34. Available at: http://www.arms-expo.ru/news/novye_razrabotki/posle_2020_goda
_v_rossii nachnetsya_proizvodstvo_submarin_pyatogo_pokoleniya_iz_kompozitov_/?sphrase_id=
11087985 (accessed: April 15, 2016).
35. Available at: http://www.reinforcedplastics.com/view/31875/adoption-of-marine-composites-a-global-perspective/ (accessed: April 25, 2016).
36. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Tehnologii utilizacii polimernyh kompozicionnyh materialov (obzor) [Recycling technologies of polymer composite materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 09. Available at: http://viam-works.ru (accessed: April 21, 2016). DOI: 10.18577/2307-6046-2015-0-8-9-9.
37. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Zarubezhnyj opyt razvitiya proizvodstva izdelij s ispolzovaniem vtorichno pererabotannyh polimernyh kompozicionnyh materialov (obzor) [Foreign experience of manufacturing products using recycled polymer composites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 12. Available at: http://www.viam-works.ru (accessed: April 21, 2016). DOI: 10.18577/2307-6046-2015-0-12-12-12.
38. Daskovskij M.I., Doriomedov M.S., Skripachev S.Yu. Sistematizaciya bazisnyh faktorov, prepyatstvuyushhih vnedreniyu polimernyh kompozicionnyh materialov v Rossii (obzor) [Underlying factors preventing the introduction of polymer composite materials in Russia (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5 St. 06. Available at: http://www.viam-works.ru (accessed: April 21, 2016). DOI: 10.18577/2307-6046-2016-0-5-6-6.
39. Doriomedov M.S., Daskovskij M.I., Skripachev S.Yu., Shein E.A. Polimernye kompozicionnye materialy v zheleznodorozhnom transporte Rossii (obzor) [Polymer composite materials in the Russian railways (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №07. St. 12. Available at: http://www.viam-works.ru (accessed: April 21, 2016). DOI: 10.18577/2307-6046-2016-0-7-12-12.
40. Doriomedov M.S., Petrov A.V., Daskovskiy M.I., Skripachev S.Yu. Pererabotka armiruyushchikh napolniteley pri utilizatsii izdeliy iz PKM [Processing of reinforcing fillers at utilization of products from PCM] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №8. St. 12. Available at: http://www.viam-works.ru (accessed: April 21, 2016). DOI: 10.18577/2307-6046-2016-0-8-12-12.
2. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
3. Kablov E.N. Sovremennye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
4. Kostylev I. I., Ovsiannikov M. K. Zarubezhnoe sudostroenie. Sostoianie i tendentsii [Foreign shipbuilding. Condition and tendencies] // Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S.O. Makarova. 2013. №6 (22). C. 66–68.
5. Gumeniuk N. S., Grushin S. S. Primenenie kompozitnykh materialov v sudostroenii [Application of composite materials in shipbuilding] // Sovremennye naukoemkie tekhnologii. 2013. №8. C. 116–117.
6. Available at: http://ruyachts.com/journal/pervyie-foto-neveroyatnoy-super-yahtyi-khalilah-ot-palmer-johnson/ (accessed: April 25, 2016).
7. Available at: http://www.mby.com/news/toyota-28-composite-construction-51869 (accessed: April 25, 2016).
8. Strukturnyi adgeziv – Crestomer 1152PA, Scott Bader [Structural adhesive – Crestomer 1152PA, Scott Bader] // Kompozitnyi mir. 2014. №5. S. 34–36.
9. Available at: http://www.styrsobolaget.se/om-oss/fartyg (accessed: April 22, 2016).
10. Available at: http://www.arms-expo.ru/news/weapons_in_the_world/perspektivnye-avianoscy-i-podlodki-ssbn-x-okazalis-ssha-ne-po-karmanu17-07-2011-10-17-00/?sphrase_id=11093783 (accessed: April 25, 2016).
11. Neliub V.A. Primenenie polimernykh kompozitsionnykh materialov v sudostroenii dlia re-monta korabelnykh nadstroek [Application of polymeric composite materials in shipbuilding for repair of ship superstructures] // Remont, vosstanovlenie, modernizatsiia. 2013. №5. S. 21–24.
12. Kompozitnoe sudostroenie [Composite shipbuilding] // Morskaia politika Rossii. 2012. №2. S.42–43.
13. Gumeniuk N.S., Grushin S.S. Primenenie kompozitnykh materialov v sudostroenii [Application of composite materials in shipbuilding] // Sovremennye naukoemkie tekhnologii. 2013. №8. S. 116–117.
14. Volzhskaia premera Vympel [Volga premiere of Vympel] // Katera i iakhty. 2014. №5 (251). S. 50–53.
15. Available at: http://www.sdelanounas.ru/blogs/60097/ (accessed: April 22, 2016).
16. Kompozitnye suda dlia rossiiskogo sudokhodstva [Composite vessels for the Russian navigation] // Morskaia politika Rossii. 2012. №2. S. 52–53.
17. Available at: http://rus-shipping.ru/ru/shipbuilding/news/?id=7958 (accessed: April 22, 2016).
18. Sirius 25: luchshii kater – 2015 po versii MBS [Sirius 25: the best boat – 2015 according to the MBS version] // Katera i iakhty. 2015. №3 (255). S. 34–35.
19. Available at: http://evolmotors.ru (accessed: April 22, 2016).
20. Available at: http://mg-boat.ru (accessed: April 22, 2016).
21 Available at: http://n-moto.ru/ishop/brand/55 (accessed: April 22, 2016).
22. Available at: http://agnc.ru/news/7565 (accessed: April 29, 2016).
23. Available at: http://tppkm.viam.ru/ (accessed: April 29, 2016).
24. Available at: http://tass.ru/armiya-i-opk/2690570 (accessed: April 20, 2016).
25. Balchiunas A. S. Kratkii obzor ispolzovaniia kompozitsionnykh materialov pri stroitelstve korablei i elementov ikh konstruktsii [The short overview of use of composite materials at construction of the ships and elements of their designs] // Nauchnye issledovaniia: ot teorii k praktike: mater. VII Mezhdunar. nauch.-prakt. konf. (Cheboksary, 13 mart 2016 g.). Cheboksary: Interaktiv plius, 2016. №1 (7). S. 146–147.
26. Available at: http://www.hccomposite.com/upload/iblock/3be/3be96be19ed64e5ff247bd976d74f0c6.pdf (accessed: April 25, 2016).
27. «Pakhari moria» na sluzhbe Rossii [«Plowmen of the sea» on service of Russia] // Vesti morskogo Peterburga. 2015. №2. S. 40–42.
28. Available at: http://almaz-kb.ru/rus/public/doc_01.pdf (accessed: April 10, 2016).
29. Available at: http://www.sdelanounas.ru/blogs/57786/ (accessed: April 20, 2016).
30. Available at: http://www.arms-ekhpo.ru/news/predpriyatiya/sredne_nevskiy_sudostroitelnyy_zavod_nachal
_shvartovye_ispytaniya_reydovogo_tralshchika_proekta_1075/ (accessed: April 15, 2016).
31. Sukhanova A. Obraztsovo-pokazatelnoe osvoenie Fibersim v OAO «Sredne-Nevskii sudo-stroitelnyi zavod» [Model development of Fibersim in JSC Sredne-Nevsky sudostroitelny zavod] // CAD/CAM/CAE Observer. 2013. Vol. 2 (78). P. 8–21. Available at: http://www.cadcamcae.lv/hot/Interview_Seredokho_n78_p8.pdf
32. Seredokho V.A. Sredne-Nevskii sudostroitelnyi zavod – 100 let traditsii i innovatsii [The average and Nevsky shipbuilding plant – 100 years of traditions and innovations] // Promyshlennaia politika v Rossiiskoi Federatsii. 2013. № 4/6. S. 8–13.
33. Available at: http://www.arms-ekhpo.ru/news/novye_razrabotki/kompozitnye_apl_vooruzhat_giperzvukovymi
_raketami_/?sphrase_id=11087985 (accessed: April 15, 2016).
34. Available at: http://www.arms-expo.ru/news/novye_razrabotki/posle_2020_goda
_v_rossii nachnetsya_proizvodstvo_submarin_pyatogo_pokoleniya_iz_kompozitov_/?sphrase_id=
11087985 (accessed: April 15, 2016).
35. Available at: http://www.reinforcedplastics.com/view/31875/adoption-of-marine-composites-a-global-perspective/ (accessed: April 25, 2016).
36. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Tehnologii utilizacii polimernyh kompozicionnyh materialov (obzor) [Recycling technologies of polymer composite materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 09. Available at: http://viam-works.ru (accessed: April 21, 2016). DOI: 10.18577/2307-6046-2015-0-8-9-9.
37. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Zarubezhnyj opyt razvitiya proizvodstva izdelij s ispolzovaniem vtorichno pererabotannyh polimernyh kompozicionnyh materialov (obzor) [Foreign experience of manufacturing products using recycled polymer composites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 12. Available at: http://www.viam-works.ru (accessed: April 21, 2016). DOI: 10.18577/2307-6046-2015-0-12-12-12.
38. Daskovskij M.I., Doriomedov M.S., Skripachev S.Yu. Sistematizaciya bazisnyh faktorov, prepyatstvuyushhih vnedreniyu polimernyh kompozicionnyh materialov v Rossii (obzor) [Underlying factors preventing the introduction of polymer composite materials in Russia (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5 St. 06. Available at: http://www.viam-works.ru (accessed: April 21, 2016). DOI: 10.18577/2307-6046-2016-0-5-6-6.
39. Doriomedov M.S., Daskovskij M.I., Skripachev S.Yu., Shein E.A. Polimernye kompozicionnye materialy v zheleznodorozhnom transporte Rossii (obzor) [Polymer composite materials in the Russian railways (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №07. St. 12. Available at: http://www.viam-works.ru (accessed: April 21, 2016). DOI: 10.18577/2307-6046-2016-0-7-12-12.
40. Doriomedov M.S., Petrov A.V., Daskovskiy M.I., Skripachev S.Yu. Pererabotka armiruyushchikh napolniteley pri utilizatsii izdeliy iz PKM [Processing of reinforcing fillers at utilization of products from PCM] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №8. St. 12. Available at: http://www.viam-works.ru (accessed: April 21, 2016). DOI: 10.18577/2307-6046-2016-0-8-12-12.
15.
№1, 2017
УДК 678.067.5
Kovalenko A.V.1, Tundaikin K.O.1, Lukinа A.I.1
Structure and SMC-materials properties on the basis of epoxy blamed ethers and poly ethers oligomers
The main requirements for technological and physic-mechanical properties of SMC-material was formulated. Such materials are used for manufacturing by high-performance pressure method of products of interior and exterior of transport objects. The materials, developed by VIAM Federal State Unitary Enterprise meet the put requirements and correspond on level of properties to the best foreign analogs was shown. The nondestructive control methods of products from SMC-materials was offered.
Work is executed within implementation of the complex scientific direction 13.2. «Constructional of Polymeric Composite Materials» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: SMC materials, polyester resins, polymeric composite materials, PCM binding, elastic and strength properties of SMC materials, nondestructive control methods.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coalplastics and fibreglasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: September 15, 2016).
3. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
4. Chursova L.V., Raskutin A.E., Gurevich Ia.M., Panina N.N. Sviazuiushchee kholodnogo ot-verzhdeniia dlia stroitelnoi industrii [Binding cold curing for the construction industry] // Klei. Germetiki. Tekhnologii. 2012. №5. S. 40–44.
5. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitelnyh konstrukcijah [Applying FRP in building structures] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 03. Available at: http://viam-works.ru (accessed: September 15, 2016).
6. Polotskii M.A. VMS i SMC – promyshlennye kompozitsionnye konstruktsionnye materialy bolshikh serii [ВMС and SMC – industrial composite constructional materials of big series] // Plastinfo [Elektronnyi resurs]. Available at: http: //www.plastinfo.ru/infor-mation/articles/320/ (accessed: September 30, 2016).
7. Reestman G. Dobavki dlia SMC/BMC [Additives for SMC/BMC] // Kompozitnyi mir. 2014. №6. S. 18–28.
8. Kablov E.N., Guniaev G.M., Ilchenko S.I., Krivonos V.V. i dr. Konstruktsionnye ugleplastiki s povyshennoi provodimostiu [Constructional carbonplastics with the increased conductivity] // Aviatsionnye materialy i tekhnologii. 2004. №2. S. 25–36.
9. Gedan-Smolka M., Muller A. Electron pretreatment of sheet molding compounds (SMC) // Progress in Organic Coatings. 2011. Vol. 72. Issues 1–2. P. 159–167.
10. DeRosa R., Telfeyan E., Mayes J.S. Current State of Recycling Sheet Molding Compounds and Related Materials // Journal of Thermoplastic Composite Materials. 2005. Vol. 18. P. 219–240.
11. Mikheev S.V., Stroganov G.B., Romashin A.G. Keramicheskie i kompozitsionnye materialy v aviatsionnoi tekhnike [Ceramic and composite materials in aviation engineering]. M.: Alteks, 2002. 276 s.
12. Dufor M.L., Detalle V., Gauthuer B., Sammut P. Low-coherence interferometry, an advanced technique for metrology and industry // Insight-nondestructive testing and condition monitoring. 2005. Vol. 47 (4). P. 216–219.
13. Blitz J., Simpson G. Ultrasonic methods of nondestructive testing. Springer-Nitherlands. 1995. 264 p.
14. Davydova I.F., Kavun N.S. Stekloplastiki ‒ mnogofunkcionalnye kompozicionnye materialy [Fibreglasses ‒ multipurpose composite materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 253–260.
15. Vavilova M.I., Kavun N.S. Svojstva i osobennosti armiruyushhih steklyannyh napolnitelej, ispolzuemyh dlya izgotovleniya konstrukcionnyh stekloplastikov [The properties of glass filler for constructions of fiberglass] // Aviacionnye materialy i tehnologii. 2014. №3. S. 33–37. DOI: 10.18577/2071-9140-2014-0-3-33-37.
2. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coalplastics and fibreglasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: September 15, 2016).
3. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
4. Chursova L.V., Raskutin A.E., Gurevich Ia.M., Panina N.N. Sviazuiushchee kholodnogo ot-verzhdeniia dlia stroitelnoi industrii [Binding cold curing for the construction industry] // Klei. Germetiki. Tekhnologii. 2012. №5. S. 40–44.
5. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitelnyh konstrukcijah [Applying FRP in building structures] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 03. Available at: http://viam-works.ru (accessed: September 15, 2016).
6. Polotskii M.A. VMS i SMC – promyshlennye kompozitsionnye konstruktsionnye materialy bolshikh serii [ВMС and SMC – industrial composite constructional materials of big series] // Plastinfo [Elektronnyi resurs]. Available at: http: //www.plastinfo.ru/infor-mation/articles/320/ (accessed: September 30, 2016).
7. Reestman G. Dobavki dlia SMC/BMC [Additives for SMC/BMC] // Kompozitnyi mir. 2014. №6. S. 18–28.
8. Kablov E.N., Guniaev G.M., Ilchenko S.I., Krivonos V.V. i dr. Konstruktsionnye ugleplastiki s povyshennoi provodimostiu [Constructional carbonplastics with the increased conductivity] // Aviatsionnye materialy i tekhnologii. 2004. №2. S. 25–36.
9. Gedan-Smolka M., Muller A. Electron pretreatment of sheet molding compounds (SMC) // Progress in Organic Coatings. 2011. Vol. 72. Issues 1–2. P. 159–167.
10. DeRosa R., Telfeyan E., Mayes J.S. Current State of Recycling Sheet Molding Compounds and Related Materials // Journal of Thermoplastic Composite Materials. 2005. Vol. 18. P. 219–240.
11. Mikheev S.V., Stroganov G.B., Romashin A.G. Keramicheskie i kompozitsionnye materialy v aviatsionnoi tekhnike [Ceramic and composite materials in aviation engineering]. M.: Alteks, 2002. 276 s.
12. Dufor M.L., Detalle V., Gauthuer B., Sammut P. Low-coherence interferometry, an advanced technique for metrology and industry // Insight-nondestructive testing and condition monitoring. 2005. Vol. 47 (4). P. 216–219.
13. Blitz J., Simpson G. Ultrasonic methods of nondestructive testing. Springer-Nitherlands. 1995. 264 p.
14. Davydova I.F., Kavun N.S. Stekloplastiki ‒ mnogofunkcionalnye kompozicionnye materialy [Fibreglasses ‒ multipurpose composite materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 253–260.
15. Vavilova M.I., Kavun N.S. Svojstva i osobennosti armiruyushhih steklyannyh napolnitelej, ispolzuemyh dlya izgotovleniya konstrukcionnyh stekloplastikov [The properties of glass filler for constructions of fiberglass] // Aviacionnye materialy i tehnologii. 2014. №3. S. 33–37. DOI: 10.18577/2071-9140-2014-0-3-33-37.
16.
№6, 2016
УДК 678.8:658.567.1
A.V. Hrulkov1, Gusev Yu.A.1, Mishkin S.I.1, Doriomedov M.S.1
Efficiency of utilization of composite materials
This article discusses economic efficiency of polymeric composite materials (PCM) utilization, actuality of PCM utilisation problem, its opportunities, industry demands, and also technological realisation problems. Presented calculations of approximate cost and economic efficiency of carbon fiber reinforced plastic gathering, sorting and recycling. This article shows that secondary used materials can cost more than recycling incurred cost.
The work was executed within implementation of the complex scientific direction 13.1. «Binding for polymer and composite materials of constructional and special purpose» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: polymer composite material, recycling, secondary use, fiber reinforced plastic, economic efficiency.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Tehnologii utilizacii polimernyh kompozicionnyh materialov (obzor) [Recycling technologies of polymer composite materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 09. Available at: http://viam-works.ru (accessed: September 07, 2016). DOI: 10.18577/2307-6046-2015-0-8-9-9.
3. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Zarubezhnyj opyt razvitiya proizvodstva izdelij s ispolzovaniem vtorichno pererabotannyh polimernyh kompozicionnyh materialov (obzor) [Foreign experience of manufacturing products using recycled polymer composites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 12. Available at: http://www.viam-works.ru (accessed: September 07, 2016). DOI: 10.18577/2307-6046-2015-0-12-12-12.
4. Doriomedov M.S., Petrov A.V., Daskovskiy M.I., Skripachev S.Yu. Pererabotka armiruyushchikh napolniteley pri utilizatsii izdeliy iz PKM [Processing of reinforcing fillers at utilization of products from PCM] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №8. St. 12. Available at: http://www.viam-works.ru (accessed: September 07, 2016). DOI: 10.18577/2307-6046-2016-0-8-12-12.
5. Daskovskij M.I., Doriomedov M.S., Skripachev S.Yu. Sistematizaciya bazisnyh faktorov, prepyatstvuyushhih vnedreniyu polimernyh kompozicionnyh materialov v Rossii (obzor) [Underlying factors preventing the introduction of polymer composite materials in Russia (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5 St. 06. Available at: http://www.viam-works.ru (accessed: September 07, 2016). DOI: 10.18577/2307-6046-2016-0-5-6-6.
6. Donetskij K.I., Khrulkov A.V. Primenenie naturalnyh volokon pri izgotovlenii polimernyh kompozicionnyh materialov [Application of naturals fibers for manufacturing of polymer composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 10. Available at: http://www.viam-works.ru (accessed: September 07, 2016). DOI: 10.18577/2307-6046-2015-0-2-10-10.
7. Khrulkov A.V., Grigorev M.M., Yazvenko L.N. Perspektivy vnedreniya bezavtoklavnykh tekhnologiy dlya izgotovleniya konstruktsionnykh materialov (obzor) [Implementation perspectives without autoclave technologies for manufacturing of constructional materials (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №2. St. 06. Available at: http://www.viam-works.ru (accessed: September 07, 2016). DOI: 10.18577/2307-6046-2016-0-2-6-6.
8. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
9. Kablov E.N. Sovremennye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
10. Kablov E.N. Aviatsionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossiyskoy akademii nauk. 2002. T. 72. №1. S. 3–12.
11. Kablov E.N. Materialy – osnova lyubogo dela [Materials – basis of any business] // Delovaya slava Rossii. 2013. №2 (40). S. 4–9.
12. Kablov E.N. Innovatsionnoe razvitie – vazhneyshiy prioritet gosudarstva [Innovative development – the most important priority of the state] // Metally Evrazii. 2010. №2. S. 6–11.
13. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coalplastics and fibreglasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: October 07, 2016).
14. Raskutin A.E. Konstruktsionnye ugleplastiki na osnove novykh svyazuyushchikh rasplavnogo tipa i tkaney PORCHER [Constructional ugleplastiki on the basis of new binding molten type and PORCHER fabrics] // Novosti materialovedeniya. Nauka i tekhnika. 2013. №5. St. 01.
15. Raskutin A.E., Khrulkov A.V., Girsh R.I. Tekhnologicheskie osobennosti mekhanoobrabotki kompozitsionnykh materialov pri izgotovlenii detaley konstruktsiy (obzor) [Technological features of machining of composite materials when manufacturing details of designs (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №9. St. 12. Available at: http://www.viam-works.ru (accessed: October 07, 2016). DOI: 10.18577/2307-6046-2016-0-9-12-12.
2. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Tehnologii utilizacii polimernyh kompozicionnyh materialov (obzor) [Recycling technologies of polymer composite materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 09. Available at: http://viam-works.ru (accessed: September 07, 2016). DOI: 10.18577/2307-6046-2015-0-8-9-9.
3. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Zarubezhnyj opyt razvitiya proizvodstva izdelij s ispolzovaniem vtorichno pererabotannyh polimernyh kompozicionnyh materialov (obzor) [Foreign experience of manufacturing products using recycled polymer composites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 12. Available at: http://www.viam-works.ru (accessed: September 07, 2016). DOI: 10.18577/2307-6046-2015-0-12-12-12.
4. Doriomedov M.S., Petrov A.V., Daskovskiy M.I., Skripachev S.Yu. Pererabotka armiruyushchikh napolniteley pri utilizatsii izdeliy iz PKM [Processing of reinforcing fillers at utilization of products from PCM] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №8. St. 12. Available at: http://www.viam-works.ru (accessed: September 07, 2016). DOI: 10.18577/2307-6046-2016-0-8-12-12.
5. Daskovskij M.I., Doriomedov M.S., Skripachev S.Yu. Sistematizaciya bazisnyh faktorov, prepyatstvuyushhih vnedreniyu polimernyh kompozicionnyh materialov v Rossii (obzor) [Underlying factors preventing the introduction of polymer composite materials in Russia (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5 St. 06. Available at: http://www.viam-works.ru (accessed: September 07, 2016). DOI: 10.18577/2307-6046-2016-0-5-6-6.
6. Donetskij K.I., Khrulkov A.V. Primenenie naturalnyh volokon pri izgotovlenii polimernyh kompozicionnyh materialov [Application of naturals fibers for manufacturing of polymer composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 10. Available at: http://www.viam-works.ru (accessed: September 07, 2016). DOI: 10.18577/2307-6046-2015-0-2-10-10.
7. Khrulkov A.V., Grigorev M.M., Yazvenko L.N. Perspektivy vnedreniya bezavtoklavnykh tekhnologiy dlya izgotovleniya konstruktsionnykh materialov (obzor) [Implementation perspectives without autoclave technologies for manufacturing of constructional materials (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №2. St. 06. Available at: http://www.viam-works.ru (accessed: September 07, 2016). DOI: 10.18577/2307-6046-2016-0-2-6-6.
8. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
9. Kablov E.N. Sovremennye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
10. Kablov E.N. Aviatsionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossiyskoy akademii nauk. 2002. T. 72. №1. S. 3–12.
11. Kablov E.N. Materialy – osnova lyubogo dela [Materials – basis of any business] // Delovaya slava Rossii. 2013. №2 (40). S. 4–9.
12. Kablov E.N. Innovatsionnoe razvitie – vazhneyshiy prioritet gosudarstva [Innovative development – the most important priority of the state] // Metally Evrazii. 2010. №2. S. 6–11.
13. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coalplastics and fibreglasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: October 07, 2016).
14. Raskutin A.E. Konstruktsionnye ugleplastiki na osnove novykh svyazuyushchikh rasplavnogo tipa i tkaney PORCHER [Constructional ugleplastiki on the basis of new binding molten type and PORCHER fabrics] // Novosti materialovedeniya. Nauka i tekhnika. 2013. №5. St. 01.
15. Raskutin A.E., Khrulkov A.V., Girsh R.I. Tekhnologicheskie osobennosti mekhanoobrabotki kompozitsionnykh materialov pri izgotovlenii detaley konstruktsiy (obzor) [Technological features of machining of composite materials when manufacturing details of designs (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №9. St. 12. Available at: http://www.viam-works.ru (accessed: October 07, 2016). DOI: 10.18577/2307-6046-2016-0-9-12-12.
17.
№6, 2016
УДК 666.7
Varrik N.M.1, Maksimov V.G.1
Features of receiving high-temperature oxide fiber
Ceramic oxide fibers are widely used currently in many industries as a high-temperature heat-shielding and heat-insulating materials and also as components of composite materials with metallic and ceramic matrices. Oxide fibers produced by sol-gel technology, followed by high temperature heat treatment. Uncontrolled grain growth of oxide fibers at elevated temperatures reduces its mechanical strength. In this paper, the characteristics of high temperature oxide fibers are considered and the effect of heat treatment on the crystalline structure of the fiber is studied.
Keywords: ceramic oxide fibers, mechanical strength, crystal structure, composite materials, heat treatment.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
3. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
4. Kablov E.N., Shchetanov B.V. Voloknistye teploizolyatsionnye i teplozashchitnye materialy: svoystva, oblasti primeneniya [Fibrous heatinsulating and heat-protective materials: properties, scopes] // Fundamentalnye problemy vysokoskorostnykh techeniy: sb. tez. dokl. Mezhdun. nauch.-tekhnich. konf. Zhukovskiy, 2004. S. 95–96.
5. Alumina: pat. 1425934 Great Britain; appl. 15.03.72; publ. 25.02.76. 11 p.
6. Production of alumina-based fiber: pat. 2521081 Japanese; appl. 05.03.87; publ. 31.07.96. 6 p.
7. Alumina fiber aggregate and its production method: pat. 6746979 US; appl. 20.03.03; publ. 08.06.04. 6 p.
8. Production of alumina fiber: pat. 5321038 Japanese; appl. 15.05.92; publ. 07.12.93. 4 p.
9. Process for production of continuous inorganic fibers and apparatus therefor: pat. 4724109 US; appl. 02.01.86; publ. 09.02.88. 9 p.
10. Method of firing dry spun refractory oxide fibers: pat. 3760049 US; appl. 01.03.71; publ. 18.09.73. 6 p.
11. Non-frangible alumina-silica fibers: pat. 4047965 US; appl. 04.05.76; publ. 13.09.77. 17 p.
12. Endless mullite fiber useful as thermally stable high performance fiber for ceramic composites, comprises aluminum oxide: pat. 102008004532 content Germany; appl.15.01.08; publ. 16.07.09. 6 p.
13. Sostav dlya polucheniya volokon na osnove oksida alyuminiya [Structure for receiving fibers on the basis of aluminum oxide]: a. s. 1154243 SSSR; zayavl. 22.09.82; opubl. 07.05.85. Byull. №17. 5 s.
14. Sposob polucheniya vysokotemperaturnogo volokna na osnove oksida alyuminiya [Way of receiving high-temperature fiber on the basis of aluminum oxide]: pat. 2212388 Ros. Federatsiya; zayavl. 19.11.01; opubl. 20.09.03. 7
15. Venkatesh R., Ramanan S.R. Effect of organic additives on the properties of sol-gel spun alumina fibers // Journal of the European Ceramic Society. 2000. Vol. 20. P. 2543–2549.
16. Schmücker M., Schneider H., Mauer T., Clauβ B. Temperature-depended evolution of grain growth in mullite fibres // Journal of the European Ceramic Society. 2005. Vol. 25. P. 3249–3256.
17. Ivakhnenko Yu.A., Varrik N.M. Materialy dlya vysokotemperaturnykh uplotneniy (obzor) [Materials for high-temperature sealants (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №6. St. 02. Available at: http://viam-works.ru (accessed: November 11, 2016). DOI: 10.18577/2307-6046-2015-0-6-2-2.
18. Kerans R.J., Hay R.S., Parthasarathy T.A., Cinibulk M.K. Interface design for oxidation-resistant ceramic composites // Journal of the American ceramic society. 2002. Vol. 85. No. 11. P. 2599–2632.
19. Zimichev A.M., Varrik N.M., Sumin A.V. Niti iz tugoplavkih oksidov dlya uplotnitelnoj teploizolyacii [Threads of refractory oxides for sealing thermal insulation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 05. Available at: http://www.viam-works.ru (accessed: November 14, 2016). DOI: 10.18577/2307-6046-2015-0-6-5-5.
20. Zimichev A.M., Varrik N.M. K voprosu primeneniya diskretnyh volokon iz tugoplavkih oksidov dlya formirovaniya serdechnika termostojkih uplotnitelnyh shnurov [On the issue of application of discrete fibers of refractory oxides to form cores of heat-resistant sealing cords] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 07. Available at: http://www.viam-works.ru (accessed: November 14, 2016). DOI: 10.18577/2307-6046-2015-0-2-7-7.
2. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
3. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
4. Kablov E.N., Shchetanov B.V. Voloknistye teploizolyatsionnye i teplozashchitnye materialy: svoystva, oblasti primeneniya [Fibrous heatinsulating and heat-protective materials: properties, scopes] // Fundamentalnye problemy vysokoskorostnykh techeniy: sb. tez. dokl. Mezhdun. nauch.-tekhnich. konf. Zhukovskiy, 2004. S. 95–96.
5. Alumina: pat. 1425934 Great Britain; appl. 15.03.72; publ. 25.02.76. 11 p.
6. Production of alumina-based fiber: pat. 2521081 Japanese; appl. 05.03.87; publ. 31.07.96. 6 p.
7. Alumina fiber aggregate and its production method: pat. 6746979 US; appl. 20.03.03; publ. 08.06.04. 6 p.
8. Production of alumina fiber: pat. 5321038 Japanese; appl. 15.05.92; publ. 07.12.93. 4 p.
9. Process for production of continuous inorganic fibers and apparatus therefor: pat. 4724109 US; appl. 02.01.86; publ. 09.02.88. 9 p.
10. Method of firing dry spun refractory oxide fibers: pat. 3760049 US; appl. 01.03.71; publ. 18.09.73. 6 p.
11. Non-frangible alumina-silica fibers: pat. 4047965 US; appl. 04.05.76; publ. 13.09.77. 17 p.
12. Endless mullite fiber useful as thermally stable high performance fiber for ceramic composites, comprises aluminum oxide: pat. 102008004532 content Germany; appl.15.01.08; publ. 16.07.09. 6 p.
13. Sostav dlya polucheniya volokon na osnove oksida alyuminiya [Structure for receiving fibers on the basis of aluminum oxide]: a. s. 1154243 SSSR; zayavl. 22.09.82; opubl. 07.05.85. Byull. №17. 5 s.
14. Sposob polucheniya vysokotemperaturnogo volokna na osnove oksida alyuminiya [Way of receiving high-temperature fiber on the basis of aluminum oxide]: pat. 2212388 Ros. Federatsiya; zayavl. 19.11.01; opubl. 20.09.03. 7
15. Venkatesh R., Ramanan S.R. Effect of organic additives on the properties of sol-gel spun alumina fibers // Journal of the European Ceramic Society. 2000. Vol. 20. P. 2543–2549.
16. Schmücker M., Schneider H., Mauer T., Clauβ B. Temperature-depended evolution of grain growth in mullite fibres // Journal of the European Ceramic Society. 2005. Vol. 25. P. 3249–3256.
17. Ivakhnenko Yu.A., Varrik N.M. Materialy dlya vysokotemperaturnykh uplotneniy (obzor) [Materials for high-temperature sealants (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №6. St. 02. Available at: http://viam-works.ru (accessed: November 11, 2016). DOI: 10.18577/2307-6046-2015-0-6-2-2.
18. Kerans R.J., Hay R.S., Parthasarathy T.A., Cinibulk M.K. Interface design for oxidation-resistant ceramic composites // Journal of the American ceramic society. 2002. Vol. 85. No. 11. P. 2599–2632.
19. Zimichev A.M., Varrik N.M., Sumin A.V. Niti iz tugoplavkih oksidov dlya uplotnitelnoj teploizolyacii [Threads of refractory oxides for sealing thermal insulation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 05. Available at: http://www.viam-works.ru (accessed: November 14, 2016). DOI: 10.18577/2307-6046-2015-0-6-5-5.
20. Zimichev A.M., Varrik N.M. K voprosu primeneniya diskretnyh volokon iz tugoplavkih oksidov dlya formirovaniya serdechnika termostojkih uplotnitelnyh shnurov [On the issue of application of discrete fibers of refractory oxides to form cores of heat-resistant sealing cords] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 07. Available at: http://www.viam-works.ru (accessed: November 14, 2016). DOI: 10.18577/2307-6046-2015-0-2-7-7.
18.
№6, 2016
УДК 691.175.5/.8
Nizina T.A.1, Chernov A.N.1, Nizin D.R.1, Popova A.I.1
Evaluation of hardener form influence оn low viscosity epoxy composites weatherability
The research results of the influence of curing system type on polymer composite materials based on epoxy resins weatherability are presented in the article. We have revealed the influence of the ambient air temperature and solar radiation parameters on surface temperature of protective and decorative coatings samples based on polymer of various hardeners.
Keywords: protective and decorative coatings, epoxy resins, hardeners, intensity of solar radiation, ultraviolet radiation.
Reference List
1. Khozin V. G. Usilenie epoksidnykh polimerov [Strengthening of epoxy polymers]. Kazan: Dom pechati, 2004. 446 s.
2. Selyaev V.P., Ivashchenko Yu.G., Nizina T.A. Polimerbetony [Polymerconcrete]. Saransk: Izd-vo Mordov. un-ta, 2016. 284 s.
3. Nizina T.A. Zashchitno-dekorativnye pokrytiya na osnove epoksidnykh i akrilovykh svyazuyushchikh [Decorative protective coverings on the basis of the epoxy and acrylic binding]. Saransk: Izd-vo Mordov. un-ta, 2007. 258 s.
4. Pavlov I.N. Starenie plastmass v estestvennykh i iskusstvennykh usloviyakh [Aging of plastic in natural and simulated conditions]. M.: Khimiya, 1982. 220 s.
5. Selyaev V.P., Nizina T.A., Egunova E.A. Soprotivlenie poliuretanovykh kompozitov deystviyu UF-oblucheniya [Resistance of polyurethane composites to action UV-radiation] // Regionalnaya arkhitektura i stroitelstvo. Penza: Izd-vo PGUAS, 2012. №1. S. 4–9.
6. Karyakina M.I. Ispytanie lakokrasochnykh materialov i pokrytiy [Testing of paint and varnish materials and coverings]. M.: Khimiya, 1988. 272 s.
7. Nizin D.R., Artamonov D.A., Chernov A.N., Nizina T.A. Rezultaty naturnykh ispytaniy polimernykh kompozitsionnykh materialov na osnove epoksidnykh svyazuyushchikh [Results of natural tests of polymeric composite materials on the basis of the epoxy binding] // Ogarev-online. Razdel «Tekhnicheskie nauki». 2014. Spetsvypusk. Available at: http://journal.mrsu.ru/arts/rezultaty-naturnykh-ispytanijj-polimernykh-kompozicionnykh-materialov-na-osnove-ehpoksidnykh-svyazuyushhikh (accessed: June 10, 2016).
8. Nizina T.A., Startsev V.O., Nizin D.R., Molokov M.V., Artamonov D.A. Issledovanie izmeneniya tsvetovykh kharakteristik modifitsirovannykh epoksidnykh kompozitov, eksponirovannykh v usloviyakh morskogo klimata [Research of change of color characteristics of the modified epoxy composites exhibited at conditions of sea climate] // Dolgovechnost' stroitelnykh materialov, izdeliy i konstruktsiy: mater. Vseross. nauch.-tekhnich. konf. Saransk: Izd-vo Mordov. un-ta, 2014. S. 107–114.
9. Nizina T.A., Selyaev V.P., Nizin D.R., Artamonov D.A. Klimaticheskaya stoykost' polimernykh kompozitsionnykh materialov na osnove epoksidnykh svyazuyushchikh [Climatic firmness of polymeric composite materials on the basis of the epoxy binding] // Regionalnaya arkhitektura i stroitel'stvo. 2015. №1. S. 34–42.
10. Nizina T.A., Startsev V.O., Selyaev V.P., Startsev O.V., Nizin D.R. Analiz vliyaniya aktinometricheskikh parametrov na intensivnost' izmeneniya tsvetovykh kharakteristik epoksidnykh kompozitov v usloviyakh morskogo klimata [The analysis of influence of actinometric parameters on intensity of change of color characteristics of epoxy composites in the conditions of sea climate] // Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2015. №5. S. 95–101.
11. Startsev V.O., Nizina T.A., Startsev O.V. Tsvetovoy kriteriy klimaticheskogo stareniya epoksidnogo polimera [Color criterion of climatic aging of epoxy polymer] // Plasticheskie massy. 2015. №7–8. S. 45–48.
12. Nizina T.A., Selyaev V.P., Nizin D.R., Chernov A.N. Modelirovanie vliyaniya aktinometricheskikh parametrov na izmenenie dekorativnykh kharakteristik epoksidnykh kompozitov, eksponirovannykh v naturnykh usloviyakh [Modeling of influence of actinometric parameters on change of decorative characteristics of the epoxy composites exhibited at natural conditions] // Regionalnaya arkhitektura i stroitelstvo. 2015. №2. S. 27–36.
13. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozitsionnykh materialov aviatsionnogo naznacheniya. III. Znachimye faktory stareniya [Climatic aging of composite materials of aviation assignment. III. Significant factors of aging] // Deformatsiya i razrushenie materialov. 2011. №1. S. 34–40.
14. Startsev O.V., Medvedev I.M., Krotov A.S., Panin S.V. Zavisimost temperatury poverkhnosti obraztsov ot kharakteristik klimata pri ekspozitsii v naturnykh usloviyakh [Dependence of surface temperature of samples on climate characteristics on exposure in natural conditions] // Korroziya: materialy, zashchita. 2013. №7. S. 43–47.
15. Nizina T.A., Selyaev V.P., Nizin D.R., Chernov A.N. Vliyanie tsveta polimernykh kompozitsionnykh materialov na rezhim ekspluatatsii zashchitno-dekorativnykh pokrytiy v usloviyakh vozdeystviya naturnykh klimaticheskikh faktorov [Influence of color of polymeric composite materials on mode of operation of decorative protective coverings in the conditions of influence of natural climatic factors] // Regionalnaya arkhitektura i stroitelstvo. 2016. №1. S. 59–67.
16. Nizina T.A., Selyaev V.P. Materialnaya baza vuza kak innovatsionnyy resurs razvitiya natsionalnogo issledovatelskogo universiteta [Material resources of higher education institution as innovative resource of development of national research university] // Dolgovechnost' stroitelnykh materialov, izdeliy i konstruktsiy: materialy Vseross. nauch.-tekhnich. konf. Saransk: Izd-vo Mordov. un-ta, 2014. S. 115–121.
2. Selyaev V.P., Ivashchenko Yu.G., Nizina T.A. Polimerbetony [Polymerconcrete]. Saransk: Izd-vo Mordov. un-ta, 2016. 284 s.
3. Nizina T.A. Zashchitno-dekorativnye pokrytiya na osnove epoksidnykh i akrilovykh svyazuyushchikh [Decorative protective coverings on the basis of the epoxy and acrylic binding]. Saransk: Izd-vo Mordov. un-ta, 2007. 258 s.
4. Pavlov I.N. Starenie plastmass v estestvennykh i iskusstvennykh usloviyakh [Aging of plastic in natural and simulated conditions]. M.: Khimiya, 1982. 220 s.
5. Selyaev V.P., Nizina T.A., Egunova E.A. Soprotivlenie poliuretanovykh kompozitov deystviyu UF-oblucheniya [Resistance of polyurethane composites to action UV-radiation] // Regionalnaya arkhitektura i stroitelstvo. Penza: Izd-vo PGUAS, 2012. №1. S. 4–9.
6. Karyakina M.I. Ispytanie lakokrasochnykh materialov i pokrytiy [Testing of paint and varnish materials and coverings]. M.: Khimiya, 1988. 272 s.
7. Nizin D.R., Artamonov D.A., Chernov A.N., Nizina T.A. Rezultaty naturnykh ispytaniy polimernykh kompozitsionnykh materialov na osnove epoksidnykh svyazuyushchikh [Results of natural tests of polymeric composite materials on the basis of the epoxy binding] // Ogarev-online. Razdel «Tekhnicheskie nauki». 2014. Spetsvypusk. Available at: http://journal.mrsu.ru/arts/rezultaty-naturnykh-ispytanijj-polimernykh-kompozicionnykh-materialov-na-osnove-ehpoksidnykh-svyazuyushhikh (accessed: June 10, 2016).
8. Nizina T.A., Startsev V.O., Nizin D.R., Molokov M.V., Artamonov D.A. Issledovanie izmeneniya tsvetovykh kharakteristik modifitsirovannykh epoksidnykh kompozitov, eksponirovannykh v usloviyakh morskogo klimata [Research of change of color characteristics of the modified epoxy composites exhibited at conditions of sea climate] // Dolgovechnost' stroitelnykh materialov, izdeliy i konstruktsiy: mater. Vseross. nauch.-tekhnich. konf. Saransk: Izd-vo Mordov. un-ta, 2014. S. 107–114.
9. Nizina T.A., Selyaev V.P., Nizin D.R., Artamonov D.A. Klimaticheskaya stoykost' polimernykh kompozitsionnykh materialov na osnove epoksidnykh svyazuyushchikh [Climatic firmness of polymeric composite materials on the basis of the epoxy binding] // Regionalnaya arkhitektura i stroitel'stvo. 2015. №1. S. 34–42.
10. Nizina T.A., Startsev V.O., Selyaev V.P., Startsev O.V., Nizin D.R. Analiz vliyaniya aktinometricheskikh parametrov na intensivnost' izmeneniya tsvetovykh kharakteristik epoksidnykh kompozitov v usloviyakh morskogo klimata [The analysis of influence of actinometric parameters on intensity of change of color characteristics of epoxy composites in the conditions of sea climate] // Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2015. №5. S. 95–101.
11. Startsev V.O., Nizina T.A., Startsev O.V. Tsvetovoy kriteriy klimaticheskogo stareniya epoksidnogo polimera [Color criterion of climatic aging of epoxy polymer] // Plasticheskie massy. 2015. №7–8. S. 45–48.
12. Nizina T.A., Selyaev V.P., Nizin D.R., Chernov A.N. Modelirovanie vliyaniya aktinometricheskikh parametrov na izmenenie dekorativnykh kharakteristik epoksidnykh kompozitov, eksponirovannykh v naturnykh usloviyakh [Modeling of influence of actinometric parameters on change of decorative characteristics of the epoxy composites exhibited at natural conditions] // Regionalnaya arkhitektura i stroitelstvo. 2015. №2. S. 27–36.
13. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozitsionnykh materialov aviatsionnogo naznacheniya. III. Znachimye faktory stareniya [Climatic aging of composite materials of aviation assignment. III. Significant factors of aging] // Deformatsiya i razrushenie materialov. 2011. №1. S. 34–40.
14. Startsev O.V., Medvedev I.M., Krotov A.S., Panin S.V. Zavisimost temperatury poverkhnosti obraztsov ot kharakteristik klimata pri ekspozitsii v naturnykh usloviyakh [Dependence of surface temperature of samples on climate characteristics on exposure in natural conditions] // Korroziya: materialy, zashchita. 2013. №7. S. 43–47.
15. Nizina T.A., Selyaev V.P., Nizin D.R., Chernov A.N. Vliyanie tsveta polimernykh kompozitsionnykh materialov na rezhim ekspluatatsii zashchitno-dekorativnykh pokrytiy v usloviyakh vozdeystviya naturnykh klimaticheskikh faktorov [Influence of color of polymeric composite materials on mode of operation of decorative protective coverings in the conditions of influence of natural climatic factors] // Regionalnaya arkhitektura i stroitelstvo. 2016. №1. S. 59–67.
16. Nizina T.A., Selyaev V.P. Materialnaya baza vuza kak innovatsionnyy resurs razvitiya natsionalnogo issledovatelskogo universiteta [Material resources of higher education institution as innovative resource of development of national research university] // Dolgovechnost' stroitelnykh materialov, izdeliy i konstruktsiy: materialy Vseross. nauch.-tekhnich. konf. Saransk: Izd-vo Mordov. un-ta, 2014. S. 115–121.
19.
№4, 2016
УДК 678
Russian production of carbon fillers today (review)
The article discusses the range and properties of carbon fibers (CF) of Russian production and the prospects for their use as reinforcing fillers in polymer composites compared with foreign counterparts as part of the import substitution policy. The work within the framework of an integrated research area 13. «Polymer composite materials (PCM)» on the problem of 13.2. «Structural PСМ» («Strategic directions of development of materials and technologies for processing them for the period up to 2030»)
Keywords: carbon fibers, polymer composite materials, reinforcing fillers, carbon composites
Reference List
1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33
3. Kablov E.N. «Dorozhnaya karta» dlya nauki i proizvodstva novykh materialov [«Road map» for a science and production of new materials] // Inzhenernaya gazeta. 2012. №15–16. S. 1, 3–5.
4. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
5. Mirovye novosti [World news] // Vestnik Soyuzkompozit. Kompozitnyy mir. 2016. №1. S. 9–17.
6. Post-reliz po itogam konferentsii «Kompozity i kompaundy 2015» [Post-release following the results of conference «Composites and compounds 2015»] // Klei. Germetiki. Tekhnologii. 2016. №2. S. 41–45.
7. Ashpina O. Konyunktura mirovogo rynka uglerodnykh volokon [Environment of the world market of carbon fibers] // The Chemical Journal. 2005. Oktyabr–noyabr. S. 33–37.
8. Lebedeva A.I., Khlebnikov V.V. Rynok uglerodnykh volokon: sostoyanie i perspektivy [Market of carbon fibers: condition and prospects] // Polimernye materialy. 2011. №4. S. 20–24.
9. Kim S. Syre – kompozity – uglevolokno [Raw materials – composites – uglevolokno] // The Chemical Journal. 2014. Oktyabr. S. 64–73.
10. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]: sb. nauch.-inform. mater. 3-e izd. M.: VIAM, 2015. 720 s.
11. Kompozity: uspekhi rossiyskikh kompaniy [Composites: successes of the Russian companies]. Available at: http://www.pressmk.ru/news/detail. php?ID=1723 (accessed: April 25, 2016).
12. Lukina N.F., Dementeva L.A., Kutsevich K.E. Kleevye prepregi na osnove tkanej Porcher – perspektivnye materialy dlya detalej i agregatov iz PKM [Adhesive prepregs based on tissue Porsher – perspective materials for parts and units out of polymeric composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 10. Available at: http://www.viam-works.ru (accessed: April 11, 2016). DOI: 10.18577/2307-6046-2014-0-6-10-10.
13. Kholdingovaya kompaniya «Kompozit» prezentovala novyy proekt – zavod po proizvodstvu uglerodnogo volokna «ALABUGA-VOLOKNO» [The Kompozit holding company presented the new project – plant on production of carbon ALABUGA-VOLOKNO fiber.]. Available at: http://www.rosatom.ru/journalist/news/ 90311f00477efa84b4cdf66578d50f5d (accessed: April 11, 2016).
14. Konkin A.A. Uglerodnye i drugie zharostoykie voloknistye materialy [Carbon and other heat resisting fibrous materials]. M.: Khimiya, 1974. 376 s.
15. Soo-Jin Park. Carbon Fibers. Korea. Springer. 2015. 330 р.
16. Mikhaylin Yu.A. Voloknistye polimernye kompozitsionnye materialy v tekhnike [Fibrous polymeric composite materials in equipment]. SPb.: Izdatel'stvo Nauchnye Osnovy i Tekhnologii. 2013. 719 s.
17. O proizvodstve uglerodnykh i poliakrilonitrilnykh volokon [About production of carbon and poliakrilonitrilny fibers]. Available at: http://www.vniisv.com/proizvodstvo_uglerodnyh_poliakrilonitrilnyh_volokon.aspx (accessed: April 25, 2016).
18. Novosti otrasli [Branch news] // Kompozitnyy mir. 2015. №4. S. 9–17.
19. Kompozitnye materialy [Composite materials]. Available at: http://www.rosatom.ru/aboutcorporation/activity/compozit/ (accessed: May 11, 2016).
20. KhK-Kompozit [HK-Kompozit]: ofits. sayt. Available at: http://www.hccomposite.com/ (accessed: May 11, 2016).
21. RT-Khimkompozit [RT-Himkompozit]: ofits. sayt. Available at: http://www.rt-chemcomposite.ru/ (accessed: April 25, 2016).
22. Available at: http://vpk.name/news/92066_rthim-kompozit_razrabatyivaet_novuyu_tehnologiyu_
polucheniya_uglerodnogo_ volokna.html (accessed: April 25, 2016).
23. Available at: http://www.niigrafit.ru/ (accessed: April 25, 2016).
24. Available at: http://www.uvicom.com/ (accessed: April 25, 2016).
25. Available at: http://www.inumit.ru/ (accessed: April 25, 2016).
26. Available at: http://oxipan.ru/ (accessed: April 25, 2016).
27. Available at: http://www.porcher-ind.com/uploads/files/PorcherRussia.pdf (accessed: April 25, 2016).
28. Available at: http://zukm.ru/ (accessed: April 25, 2016).
29. Available at: http://rus-carbon.ru/ (accessed: April 25, 2016).
30. Raskutin A.E. Uglerodnye tkani dlya proizvodstva konstruktsiy iz polimernykh kompozitsionnykh materialov [Carbon fabrics for production of designs from polymeric composite materials] // Materialovedenie. 2014. №8. S. 46–49.
31. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: April 11, 2016). DOI: 10.18577/2307-6046-2015-0-9-11-11
32. Gunyaeva A.G., Chursova L.V. Molniestoykie ugleplastiki, modifitsirovannye uglerodnymi nanochastitsami, izgotovlennye sposobom infuzionnogo formovaniya [Lightning resistant carbon fibers, modified by the carbon nanoparticles, made in the way of infusional formation] // Vse materialy. Entsiklopedicheskiy spravochnik. 2015. №10. S. 25–32.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33
3. Kablov E.N. «Dorozhnaya karta» dlya nauki i proizvodstva novykh materialov [«Road map» for a science and production of new materials] // Inzhenernaya gazeta. 2012. №15–16. S. 1, 3–5.
4. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
5. Mirovye novosti [World news] // Vestnik Soyuzkompozit. Kompozitnyy mir. 2016. №1. S. 9–17.
6. Post-reliz po itogam konferentsii «Kompozity i kompaundy 2015» [Post-release following the results of conference «Composites and compounds 2015»] // Klei. Germetiki. Tekhnologii. 2016. №2. S. 41–45.
7. Ashpina O. Konyunktura mirovogo rynka uglerodnykh volokon [Environment of the world market of carbon fibers] // The Chemical Journal. 2005. Oktyabr–noyabr. S. 33–37.
8. Lebedeva A.I., Khlebnikov V.V. Rynok uglerodnykh volokon: sostoyanie i perspektivy [Market of carbon fibers: condition and prospects] // Polimernye materialy. 2011. №4. S. 20–24.
9. Kim S. Syre – kompozity – uglevolokno [Raw materials – composites – uglevolokno] // The Chemical Journal. 2014. Oktyabr. S. 64–73.
10. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]: sb. nauch.-inform. mater. 3-e izd. M.: VIAM, 2015. 720 s.
11. Kompozity: uspekhi rossiyskikh kompaniy [Composites: successes of the Russian companies]. Available at: http://www.pressmk.ru/news/detail. php?ID=1723 (accessed: April 25, 2016).
12. Lukina N.F., Dementeva L.A., Kutsevich K.E. Kleevye prepregi na osnove tkanej Porcher – perspektivnye materialy dlya detalej i agregatov iz PKM [Adhesive prepregs based on tissue Porsher – perspective materials for parts and units out of polymeric composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 10. Available at: http://www.viam-works.ru (accessed: April 11, 2016). DOI: 10.18577/2307-6046-2014-0-6-10-10.
13. Kholdingovaya kompaniya «Kompozit» prezentovala novyy proekt – zavod po proizvodstvu uglerodnogo volokna «ALABUGA-VOLOKNO» [The Kompozit holding company presented the new project – plant on production of carbon ALABUGA-VOLOKNO fiber.]. Available at: http://www.rosatom.ru/journalist/news/ 90311f00477efa84b4cdf66578d50f5d (accessed: April 11, 2016).
14. Konkin A.A. Uglerodnye i drugie zharostoykie voloknistye materialy [Carbon and other heat resisting fibrous materials]. M.: Khimiya, 1974. 376 s.
15. Soo-Jin Park. Carbon Fibers. Korea. Springer. 2015. 330 р.
16. Mikhaylin Yu.A. Voloknistye polimernye kompozitsionnye materialy v tekhnike [Fibrous polymeric composite materials in equipment]. SPb.: Izdatel'stvo Nauchnye Osnovy i Tekhnologii. 2013. 719 s.
17. O proizvodstve uglerodnykh i poliakrilonitrilnykh volokon [About production of carbon and poliakrilonitrilny fibers]. Available at: http://www.vniisv.com/proizvodstvo_uglerodnyh_poliakrilonitrilnyh_volokon.aspx (accessed: April 25, 2016).
18. Novosti otrasli [Branch news] // Kompozitnyy mir. 2015. №4. S. 9–17.
19. Kompozitnye materialy [Composite materials]. Available at: http://www.rosatom.ru/aboutcorporation/activity/compozit/ (accessed: May 11, 2016).
20. KhK-Kompozit [HK-Kompozit]: ofits. sayt. Available at: http://www.hccomposite.com/ (accessed: May 11, 2016).
21. RT-Khimkompozit [RT-Himkompozit]: ofits. sayt. Available at: http://www.rt-chemcomposite.ru/ (accessed: April 25, 2016).
22. Available at: http://vpk.name/news/92066_rthim-kompozit_razrabatyivaet_novuyu_tehnologiyu_
polucheniya_uglerodnogo_ volokna.html (accessed: April 25, 2016).
23. Available at: http://www.niigrafit.ru/ (accessed: April 25, 2016).
24. Available at: http://www.uvicom.com/ (accessed: April 25, 2016).
25. Available at: http://www.inumit.ru/ (accessed: April 25, 2016).
26. Available at: http://oxipan.ru/ (accessed: April 25, 2016).
27. Available at: http://www.porcher-ind.com/uploads/files/PorcherRussia.pdf (accessed: April 25, 2016).
28. Available at: http://zukm.ru/ (accessed: April 25, 2016).
29. Available at: http://rus-carbon.ru/ (accessed: April 25, 2016).
30. Raskutin A.E. Uglerodnye tkani dlya proizvodstva konstruktsiy iz polimernykh kompozitsionnykh materialov [Carbon fabrics for production of designs from polymeric composite materials] // Materialovedenie. 2014. №8. S. 46–49.
31. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: April 11, 2016). DOI: 10.18577/2307-6046-2015-0-9-11-11
32. Gunyaeva A.G., Chursova L.V. Molniestoykie ugleplastiki, modifitsirovannye uglerodnymi nanochastitsami, izgotovlennye sposobom infuzionnogo formovaniya [Lightning resistant carbon fibers, modified by the carbon nanoparticles, made in the way of infusional formation] // Vse materialy. Entsiklopedicheskiy spravochnik. 2015. №10. S. 25–32.
20.
№3, 2016
УДК 666-426:669.018.45
Zimichev A.M.1, Varrik N.M.1, Sumin V.A.1
To the question of receiving ceramic threads on the basis of high-melting oxides
Ceramic fibers are currently a priority object for development as the main component for the heatproof and heat-insulating materials with high temperature applications. Continuous oxide fibers are using for producing textiles: yarns, ribbons, fabrics for thermal protection and insulation of cables, braid thermocouples, fire-resistant screens. In this paper it was investigated the features of the process of obtaining twisted yarns of high-temperature fibers based on aluminum oxide. The influence of such parameters as the viscosity of the fibre-forming solution, the speed of fiber drawing, thermal treatment mode, the performance properties of ceramic filaments has been studied.
Keywords: refractory oxide, high temperature insulation, ceramic threads.
Reference List
1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
2. Tinjakova E.V., Grashhenkov D.V. Teploizoljacionnyj material na osnove mullito-korundovyh i kvarcevyh volokon [Heatinsulating material on the basis of mullito-korundovy and quartz fibers] // Aviacionnye materialy i tehnologii. 2012. №3. S. 43–46.
3. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: May 16, 2015).
5. Dospehi dlja «Burana». Materialy i tehnologii VIAM dlja MKS «Jenergija–Buran» [Armor for «Buran». Materials and VIAM technologies for ISS of «Energiya-Buran»] / pod obshh. red. E.N. Kablova. M.: Nauka i zhizn, 2013. 128 s.
6. Kablov E.N., Shhetanov B.V. Voloknistye teploizoljacionnye i teplozashhitnye materialy: svojstva, oblasti primenenija [Fibrous heatinsulating and heat-shielding materials: properties, scopes] // Tez. dokl. Mezhdunar. nauch.-tehnich. konf. «Fundamental'nye problemy vysokoskorostnyh techenij». Zhukovskij, 2004. S. 95–96.
7. Process for producing alumina fiber or alumina-silica fiber: pat. 4101615 US; publ. 18.07.78. 9 p.
8. Process for producing alumina-based fiber: pat. 5002750 US; publ. 26.03.91. 6 p.
9. Non-frangible alumina-silica fibers: pat. 4047965US; publ. 13.09.77. 17 p.
10. Bunsell A.R. Oxide Fibers for High-Temperature Reinforcement and Insulation // JOM. 2005.
V. 57. №2. P. 48–51.
11. Alumina fiber coated with sizing agent: pat. app. JPH 07150476; publ. 13.06.95. 4 p.
12. Sizing composition especially for sizing glass fibers comprises a monomer mixture comprising an isocyanate, an alcohol and optionally an amine: pat. 2839968 FR; publ. 28.11.03. 28 p.
13. Method of firing dry spun refractory oxide fibers: pat. 3760049 US; publ. 18.09.73. 6 p.
14. Composite sewing thread of ceramic fibers: pat. 4375779 US; publ. 08.03.83. 7 p.
15. Twisted ceramic fiber sewing thread: pat. 4430851 US; publ. 14.02.84. 9 p.
16. Sposob poluchenija vysokotemperaturnogo volokna na osnove oksida aljuminija [Way of receiving high-temperature fiber on the basis of aluminum oxide]: pat. 2212388 Ros. Federacija; opubl. 20.09.03. 9 s.
17. Zimichev A.M., Varrik N.M., Dalin M.A. Izmerenie modulja uprugosti volokon iz tugoplavkih oksidov [Measurement of the module of elasticity of fibers from refractory oxides] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2014. №6. St. 05. Available at: http://www.viam-works.ru (accessed: May 16, 2016). DOI: 10.18577/2307-6046-2014-0-6-5-5.
18. Zimichev A.M., Varrik N.M. Termogravimetricheskie issledovanija nitej na osnove oksida alju-minija [Thermogravimetric researches of threads on the basis of aluminum oxide] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2014. №6. St. 06. Available at: http://www.viam-works.ru (accessed: May 16, 2016). DOI: 10.18577/2307-6046-2014-0-6-6-6.
19. Zimichev A.M., Balinova Ju.A., Varrik N.M. K voprosu o module uprugosti volokon iz tugoplav-kih oksidov [To a question of the module of elasticity of fibers from refractory oxides] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2014. №10. St. 06. Available at: http://www.viam-works.ru (accessed: May 16, 2016). DOI: 10.18577/2307-6046-2014-0-10-6-6.
20. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova jekonomicheskogo i nauchno-tehnicheskogo razvitija Rossii [Constructional and functional materials – a basis of economic and scientific and technical development of Russia] // Voprosy materialovedenija. 2006. №1. S. 64–67.
21. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
2. Tinjakova E.V., Grashhenkov D.V. Teploizoljacionnyj material na osnove mullito-korundovyh i kvarcevyh volokon [Heatinsulating material on the basis of mullito-korundovy and quartz fibers] // Aviacionnye materialy i tehnologii. 2012. №3. S. 43–46.
3. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: May 16, 2015).
5. Dospehi dlja «Burana». Materialy i tehnologii VIAM dlja MKS «Jenergija–Buran» [Armor for «Buran». Materials and VIAM technologies for ISS of «Energiya-Buran»] / pod obshh. red. E.N. Kablova. M.: Nauka i zhizn, 2013. 128 s.
6. Kablov E.N., Shhetanov B.V. Voloknistye teploizoljacionnye i teplozashhitnye materialy: svojstva, oblasti primenenija [Fibrous heatinsulating and heat-shielding materials: properties, scopes] // Tez. dokl. Mezhdunar. nauch.-tehnich. konf. «Fundamental'nye problemy vysokoskorostnyh techenij». Zhukovskij, 2004. S. 95–96.
7. Process for producing alumina fiber or alumina-silica fiber: pat. 4101615 US; publ. 18.07.78. 9 p.
8. Process for producing alumina-based fiber: pat. 5002750 US; publ. 26.03.91. 6 p.
9. Non-frangible alumina-silica fibers: pat. 4047965US; publ. 13.09.77. 17 p.
10. Bunsell A.R. Oxide Fibers for High-Temperature Reinforcement and Insulation // JOM. 2005.
V. 57. №2. P. 48–51.
11. Alumina fiber coated with sizing agent: pat. app. JPH 07150476; publ. 13.06.95. 4 p.
12. Sizing composition especially for sizing glass fibers comprises a monomer mixture comprising an isocyanate, an alcohol and optionally an amine: pat. 2839968 FR; publ. 28.11.03. 28 p.
13. Method of firing dry spun refractory oxide fibers: pat. 3760049 US; publ. 18.09.73. 6 p.
14. Composite sewing thread of ceramic fibers: pat. 4375779 US; publ. 08.03.83. 7 p.
15. Twisted ceramic fiber sewing thread: pat. 4430851 US; publ. 14.02.84. 9 p.
16. Sposob poluchenija vysokotemperaturnogo volokna na osnove oksida aljuminija [Way of receiving high-temperature fiber on the basis of aluminum oxide]: pat. 2212388 Ros. Federacija; opubl. 20.09.03. 9 s.
17. Zimichev A.M., Varrik N.M., Dalin M.A. Izmerenie modulja uprugosti volokon iz tugoplavkih oksidov [Measurement of the module of elasticity of fibers from refractory oxides] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2014. №6. St. 05. Available at: http://www.viam-works.ru (accessed: May 16, 2016). DOI: 10.18577/2307-6046-2014-0-6-5-5.
18. Zimichev A.M., Varrik N.M. Termogravimetricheskie issledovanija nitej na osnove oksida alju-minija [Thermogravimetric researches of threads on the basis of aluminum oxide] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2014. №6. St. 06. Available at: http://www.viam-works.ru (accessed: May 16, 2016). DOI: 10.18577/2307-6046-2014-0-6-6-6.
19. Zimichev A.M., Balinova Ju.A., Varrik N.M. K voprosu o module uprugosti volokon iz tugoplav-kih oksidov [To a question of the module of elasticity of fibers from refractory oxides] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2014. №10. St. 06. Available at: http://www.viam-works.ru (accessed: May 16, 2016). DOI: 10.18577/2307-6046-2014-0-10-6-6.
20. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova jekonomicheskogo i nauchno-tehnicheskogo razvitija Rossii [Constructional and functional materials – a basis of economic and scientific and technical development of Russia] // Voprosy materialovedenija. 2006. №1. S. 64–67.
21. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
21.
№3, 2016
УДК 66.017
Senatorova O.G.1, Lukina N.Ph.1, Shestov V.V.1
Use of glue prepregs in layered hybrid designs on basis aluminum-lithium alloys and SIAL
It is opportunity to improve weight efficiency by application of laminated skin from hybrid material which consists of high-strength Al–Li alloy sheets and aluminium-glassplastic Laminate SIAL-type. Such materials have high resistance of fatigue crack growth, lower density and high strength in comparison with monolithic materials.
The structure and properties of prototype of hybrid wing panel of Tu-204 aircraft were evaluated was produced in commercial conditions, OAO «Voronezh Aircraft JVC» (VASO). Standard samples were used for tensile, compression low fatigue tests and for determination of FGGR (dl/dN). Hybrid laminated materials are recommended to use for lower and upper wing panels, as a result of the structural components: adhesive prepregs, reinforced glassfibers and Al–Li alloy sheets.
Keywords: hybrid laminated material, wing panel, skin, stringer, Al–Li alloy, adhesive prepreg, SIAL.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic di-rections of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Fridlyander I.N., Kolobnev N.I., Sandler V.S. Alyuminiy-litievye splavy: entsiklopediya [Aluminum-lithium alloys: encyclopedia]. M.: Mashinostroenie, 2001. T. II-3: Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy / pod red. I.N. Fridlyandera, E.N. Kablova. S. 156–185.
3. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012. 520 s.
4. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
5. Fridlyander I.N. Vospominaniya o sozdanii aviakosmicheskoy i atomnoy tekhniki iz alyuminievykh splavov [Memories of creation of aerospace and nuclear equipment from aluminum alloys]. M.: Nauka, 2005. 275 s.
6. Kablov E.N. VIAM: prodolzhenie puti [VIAM: way continuation] // Nauka v Rossii. 2012. №3.
S. 36–44.
7. Antipov V.V., Senatorova O.G., Lukina N.F. i dr. Sloistye metallopolimernye kompozicionnye materialy [Layered metalpolymeric composite materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 226–230.
8. Senatorova O.G., Antipov V.V., Lukina N.F. i dr. Vysokoprochnye, treshchinostoykie, legkie alyumostekloplastiki SIAL – perspektivnye materialy dlya aviatsionnykh konstruktsiy [High-strength, treshchinostoyky, easy алюмостеклопластики SIAL – perspective materials for aviation designs] // TLS. 2009. №2. S. 29–31.
9. Antipov V.V., Lavro N.A., Sukhoivanenko V.V., Senatorova O.G. Opyt primeneniya Al–Li splava 1441 i sloistogo materiala na ego osnove v gidrosamoletakh [Experience of application of Al-Li of an alloy 1441 and a layered material on its basis in seaplanes] // Tsvetnye metally. 2013. №8.
S. 46–50.
10. Laminate of metal sheets and polymer: pat. 0256370 US; publ. 20.10.11.
11. Plokker M., Daverschot D., Beumler T. Hybrid structure solution for the A400M wing attachment frames // 25th ICAF Symposium. Rotterdam. May 27–29, 2009.
12. Roebroeks G.H.J.J., Hooijmeijer P.A., Kroon E.J., Heinimann M.B. The development of central // First International Conference on Damage Tolerance of Aircraft Structures. 2009.
13. Mashinostroenie: entsiklopediya v 40 t [Mechanical engineering: the encyclopedia in 40 vol.]. M.: Mashinostroenie, 2004. T. ΙV-21: Samolety i vertolety, kn. 2: Proektirovanie, kon-struktsii i sistemy samoletov i vertoletov. C. 226–252.
14. OST1 12085–77. Bolty s umenshennoy shestigrannoy golovkoy iz titanovogo splava dlya soedineniy so spetsial'noy perekhodnoy posadkoy [Bolts with the reduced six-sided head from a titanic alloy for connections with special transitional landing].
15. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Novyy klass sloistykh alyumostekloplastikov na osnove alyuminiy-litievogo splava 1441 s ponizhennoy plotnostyu [New class layered алюмостеклопластиков on a basis aluminum-lithium alloy 1441 with a lowered density] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 174–184.
16. Shestov V.V., Antipov V.V., Senatorova O.G., Sidelnikov V.V. Konstruktsionnye sloistye alyumostekloplastiki 1441-SIAL [Constructional layered aluminum fibreglasses 1441-SIAL] //MiTOM. 2013. №9. S. 28–32.
17. Fridlyander I.N., Anikhovskaya L.I., Senatorova O.G. i dr. Kleenye metallicheskie i sloistye kompozity: entsiklopediya [Glued metal and layered composites: encyclopedia]. M.: Mash-inostroenie, 2001. T. II-3: Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy / pod red. I.N. Fridlyandera, E.N. Kablova. S. 814–832.
18. Lukina N.F., Dementeva L.A., Serezhenkov A.A., Kotova E.V., Senatorova O.G., Sidel'nikov V.V. Kleevye prepregi i kompozitsionnye sloistye alyumopolimernye materialy na ikh osnove [Glue препреги and composite layered alyumopolimerny materials on their basis] // Rossiyskiy khimicheskiy zhurnal. 2010. №1. S. 53–56.
19. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi i sloistye materialy na ih osnove [Adhesive prepregs and layered materials on their basis] // Avi-acionnye materialy i tehnologii. 2013. №2. S. 19–21.
20. Skornyakov V.I., Antipov V.V. Innovacionnyj harakter sotrudnichestva OAO «KUMZ» i FGUP «VIAM» [Innovative nature of cooperation of JSC «KUMZ» and FSUE «VIAM»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 11–14.
21. Sloistye kompozitsionnye materialy–98 [Layered composite materials-98] // Sb. tr. Mezhdunar. konf. Volgograd, 1998. 351 s.
22. Antipov V.V., Senatorova O.G., Beumber T., Lipma M. Investigation of a new fibre metal laminate (FML) family on the base of Al–Li alloy with lower density // Materials Science and Engineering Techology. 2012. №4. P. 350–355.
23. Fibre Metal Laminates / ed. by Ad. Vlot, Yan. W. Gunnik. Academic Publishers, 2001. 527 р.
24. Erasov V.S., Nuzhnyj G.A., Grinevich A.V., Terehin A.L. Treshhinostojkost aviacionnyh materialov v processe ispytaniya na ustalost [Crack growth resistance of aviation materials in fatigue testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №10. St. 06. Available at: http://www.viam-works.ru (accessed: March 14, 2016).
25. Oreshko E.I., Erasov V.S., Podjivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117.
26. Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., Erasov V.S., Kashirin V.V. Gibridnye sloistye materialy na baze alyuminiy-litievykh splavov primenitelno k panelyam kryla samoleta [Hybrid layered materials on base aluminum-lithium alloys with reference to airplane wing panels] // Aviatsionnye materialy i tekhnologii. 2016 (v pechati).
2. Fridlyander I.N., Kolobnev N.I., Sandler V.S. Alyuminiy-litievye splavy: entsiklopediya [Aluminum-lithium alloys: encyclopedia]. M.: Mashinostroenie, 2001. T. II-3: Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy / pod red. I.N. Fridlyandera, E.N. Kablova. S. 156–185.
3. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012. 520 s.
4. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
5. Fridlyander I.N. Vospominaniya o sozdanii aviakosmicheskoy i atomnoy tekhniki iz alyuminievykh splavov [Memories of creation of aerospace and nuclear equipment from aluminum alloys]. M.: Nauka, 2005. 275 s.
6. Kablov E.N. VIAM: prodolzhenie puti [VIAM: way continuation] // Nauka v Rossii. 2012. №3.
S. 36–44.
7. Antipov V.V., Senatorova O.G., Lukina N.F. i dr. Sloistye metallopolimernye kompozicionnye materialy [Layered metalpolymeric composite materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 226–230.
8. Senatorova O.G., Antipov V.V., Lukina N.F. i dr. Vysokoprochnye, treshchinostoykie, legkie alyumostekloplastiki SIAL – perspektivnye materialy dlya aviatsionnykh konstruktsiy [High-strength, treshchinostoyky, easy алюмостеклопластики SIAL – perspective materials for aviation designs] // TLS. 2009. №2. S. 29–31.
9. Antipov V.V., Lavro N.A., Sukhoivanenko V.V., Senatorova O.G. Opyt primeneniya Al–Li splava 1441 i sloistogo materiala na ego osnove v gidrosamoletakh [Experience of application of Al-Li of an alloy 1441 and a layered material on its basis in seaplanes] // Tsvetnye metally. 2013. №8.
S. 46–50.
10. Laminate of metal sheets and polymer: pat. 0256370 US; publ. 20.10.11.
11. Plokker M., Daverschot D., Beumler T. Hybrid structure solution for the A400M wing attachment frames // 25th ICAF Symposium. Rotterdam. May 27–29, 2009.
12. Roebroeks G.H.J.J., Hooijmeijer P.A., Kroon E.J., Heinimann M.B. The development of central // First International Conference on Damage Tolerance of Aircraft Structures. 2009.
13. Mashinostroenie: entsiklopediya v 40 t [Mechanical engineering: the encyclopedia in 40 vol.]. M.: Mashinostroenie, 2004. T. ΙV-21: Samolety i vertolety, kn. 2: Proektirovanie, kon-struktsii i sistemy samoletov i vertoletov. C. 226–252.
14. OST1 12085–77. Bolty s umenshennoy shestigrannoy golovkoy iz titanovogo splava dlya soedineniy so spetsial'noy perekhodnoy posadkoy [Bolts with the reduced six-sided head from a titanic alloy for connections with special transitional landing].
15. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Novyy klass sloistykh alyumostekloplastikov na osnove alyuminiy-litievogo splava 1441 s ponizhennoy plotnostyu [New class layered алюмостеклопластиков on a basis aluminum-lithium alloy 1441 with a lowered density] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 174–184.
16. Shestov V.V., Antipov V.V., Senatorova O.G., Sidelnikov V.V. Konstruktsionnye sloistye alyumostekloplastiki 1441-SIAL [Constructional layered aluminum fibreglasses 1441-SIAL] //MiTOM. 2013. №9. S. 28–32.
17. Fridlyander I.N., Anikhovskaya L.I., Senatorova O.G. i dr. Kleenye metallicheskie i sloistye kompozity: entsiklopediya [Glued metal and layered composites: encyclopedia]. M.: Mash-inostroenie, 2001. T. II-3: Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy / pod red. I.N. Fridlyandera, E.N. Kablova. S. 814–832.
18. Lukina N.F., Dementeva L.A., Serezhenkov A.A., Kotova E.V., Senatorova O.G., Sidel'nikov V.V. Kleevye prepregi i kompozitsionnye sloistye alyumopolimernye materialy na ikh osnove [Glue препреги and composite layered alyumopolimerny materials on their basis] // Rossiyskiy khimicheskiy zhurnal. 2010. №1. S. 53–56.
19. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi i sloistye materialy na ih osnove [Adhesive prepregs and layered materials on their basis] // Avi-acionnye materialy i tehnologii. 2013. №2. S. 19–21.
20. Skornyakov V.I., Antipov V.V. Innovacionnyj harakter sotrudnichestva OAO «KUMZ» i FGUP «VIAM» [Innovative nature of cooperation of JSC «KUMZ» and FSUE «VIAM»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 11–14.
21. Sloistye kompozitsionnye materialy–98 [Layered composite materials-98] // Sb. tr. Mezhdunar. konf. Volgograd, 1998. 351 s.
22. Antipov V.V., Senatorova O.G., Beumber T., Lipma M. Investigation of a new fibre metal laminate (FML) family on the base of Al–Li alloy with lower density // Materials Science and Engineering Techology. 2012. №4. P. 350–355.
23. Fibre Metal Laminates / ed. by Ad. Vlot, Yan. W. Gunnik. Academic Publishers, 2001. 527 р.
24. Erasov V.S., Nuzhnyj G.A., Grinevich A.V., Terehin A.L. Treshhinostojkost aviacionnyh materialov v processe ispytaniya na ustalost [Crack growth resistance of aviation materials in fatigue testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №10. St. 06. Available at: http://www.viam-works.ru (accessed: March 14, 2016).
25. Oreshko E.I., Erasov V.S., Podjivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117.
26. Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., Erasov V.S., Kashirin V.V. Gibridnye sloistye materialy na baze alyuminiy-litievykh splavov primenitelno k panelyam kryla samoleta [Hybrid layered materials on base aluminum-lithium alloys with reference to airplane wing panels] // Aviatsionnye materialy i tekhnologii. 2016 (v pechati).
22.
№2, 2016
УДК 621.792.053
Dementyeva L.A.1, Lukina N.Ph.1, Petrova A.P.1
The use of adhesive binders for production of polymeric composite materials.
The article presents the rheological properties of the adhesive binders and their relationship with temperature and time parameters of the production of adhesive prepregs. Displaying appointment of binders and adhesive properties of carbon and glass prepregs based on them, and the properties of composite adhesive materials.
Work is executed within implementation of the complex scientific direction 15.1. «Multifunction gluing systems» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: adhesive bonding, adhesive prepreg, rheological and mechanical properties, glass filler, carbon filler.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their pro-cessing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: April 5, 2016). DOI: 10.18577/2307-6046-2015-0-9-11-11.
4. Kirienko T.A., Lukina N.F., Kucevich K.E., Petrova A.P. Issledovanie reologicheskih svojstv kleevyh svjazujushhih [Research of reologichesky properties of the glue binding] // Klei. Germetiki. Tehnologii. 2016. №2. S. 6–8.
5. Dementeva L.A., Serezhenkov A.A., Bocharova L.I., Lukina N.F., Kucevich K.E., Petrova A.P. Svojstva kompozicionnyh materialov na osnove kleevyh prepregov [Properties of composite mate-rials on the basis of glue prepregs] // Klei. Germetiki. Tehnologii. 2012. №6. S. 19–24.
6. Anihovskaja L.I., Minakov V.T. Klei i kleevye prepregi dlja perspektivnyh izdelij aviakosmicheskoj tehniki [Glues and glue prepres for perspective products of aerospace equipment] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: jubilejnyj nauch.-tehnich. sb. M.: MISIS–VIAM, 2002. S. 315–326.
7. Kucevich K.E., Aleksashin V.M., Petrova A.P., Antjufeeva N.V. Issledovanie kinetiki reakcij otverzhdenija kleevyh svjazujushhih [Research of kinetics of reactions of an cure of the glue binding] // Klei. Germetiki. Tehnoligii. 2014. №11. S. 27–31.
8. Dementeva L.A., Lukina N.F., Petrova A.P., Kucevich K.E. Primenenie kompozicionnyh materialov na osnove kleevyh prepregov v mashinostroenii [Application of composite materials on the basis of glue препрегов in mechanical engineering] // Vse materialy. Jenciklopedicheskij spravochnik. 2014. №8. S. 11–17.
9. Sharova I.A., Petrova A.P. Obzor po materialam mezhdunarodnoj konferencii po kleyam i germet-ikam (WAC-2012, Franciya) [Review of world adhesive and sealant conference (WAC-2012, France] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 06. Available at: http://www.viam-works.ru (accessed: April 5, 2016).
10. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
11. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
12. Kablov E.N., Minakov V.T., Anihovskaja L.I. Klei i materialy na ih osnove dlja remonta konstrukcij aviacionnoj tehniki [Glues and materials on their basis for repair of designs of aviation engineering] // Aviacionnye materialy i tehnologii: nauch.-tehnich. sb. M.: VIAM, 2002. №1. S. 61–65.
13. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi i sloistye materialy na ih osnove [Adhesive prepregs and layered materials on their basis] // Aviacionnye materialy i tehnologii. 2013. №2. S. 19–21.
14. Petrova A.P. Osnovnye jetapy tehnologii skleivanija [Main stages of technology of pasting] // Klei. Germetiki. Tehnologii. 2014. №2. S. 24–30.
15. Kucevich K.E., Dement'eva L.A., Lukina N.F., Chursova L.V. Svojstva i naznachenie kleja VK-36RM dlja aviacionnoj tehniki [Properties and purpose of VK-36PM glue for aviation engi-neering] // Klei. Germetiki. Tehnologii. 2013. №8. S. 5–6.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their pro-cessing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: April 5, 2016). DOI: 10.18577/2307-6046-2015-0-9-11-11.
4. Kirienko T.A., Lukina N.F., Kucevich K.E., Petrova A.P. Issledovanie reologicheskih svojstv kleevyh svjazujushhih [Research of reologichesky properties of the glue binding] // Klei. Germetiki. Tehnologii. 2016. №2. S. 6–8.
5. Dementeva L.A., Serezhenkov A.A., Bocharova L.I., Lukina N.F., Kucevich K.E., Petrova A.P. Svojstva kompozicionnyh materialov na osnove kleevyh prepregov [Properties of composite mate-rials on the basis of glue prepregs] // Klei. Germetiki. Tehnologii. 2012. №6. S. 19–24.
6. Anihovskaja L.I., Minakov V.T. Klei i kleevye prepregi dlja perspektivnyh izdelij aviakosmicheskoj tehniki [Glues and glue prepres for perspective products of aerospace equipment] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: jubilejnyj nauch.-tehnich. sb. M.: MISIS–VIAM, 2002. S. 315–326.
7. Kucevich K.E., Aleksashin V.M., Petrova A.P., Antjufeeva N.V. Issledovanie kinetiki reakcij otverzhdenija kleevyh svjazujushhih [Research of kinetics of reactions of an cure of the glue binding] // Klei. Germetiki. Tehnoligii. 2014. №11. S. 27–31.
8. Dementeva L.A., Lukina N.F., Petrova A.P., Kucevich K.E. Primenenie kompozicionnyh materialov na osnove kleevyh prepregov v mashinostroenii [Application of composite materials on the basis of glue препрегов in mechanical engineering] // Vse materialy. Jenciklopedicheskij spravochnik. 2014. №8. S. 11–17.
9. Sharova I.A., Petrova A.P. Obzor po materialam mezhdunarodnoj konferencii po kleyam i germet-ikam (WAC-2012, Franciya) [Review of world adhesive and sealant conference (WAC-2012, France] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 06. Available at: http://www.viam-works.ru (accessed: April 5, 2016).
10. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
11. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
12. Kablov E.N., Minakov V.T., Anihovskaja L.I. Klei i materialy na ih osnove dlja remonta konstrukcij aviacionnoj tehniki [Glues and materials on their basis for repair of designs of aviation engineering] // Aviacionnye materialy i tehnologii: nauch.-tehnich. sb. M.: VIAM, 2002. №1. S. 61–65.
13. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi i sloistye materialy na ih osnove [Adhesive prepregs and layered materials on their basis] // Aviacionnye materialy i tehnologii. 2013. №2. S. 19–21.
14. Petrova A.P. Osnovnye jetapy tehnologii skleivanija [Main stages of technology of pasting] // Klei. Germetiki. Tehnologii. 2014. №2. S. 24–30.
15. Kucevich K.E., Dement'eva L.A., Lukina N.F., Chursova L.V. Svojstva i naznachenie kleja VK-36RM dlja aviacionnoj tehniki [Properties and purpose of VK-36PM glue for aviation engi-neering] // Klei. Germetiki. Tehnologii. 2013. №8. S. 5–6.
23.
№1, 2016
УДК 620.1:678.8
Microstructure and Properties of the Structural Composite Material at Static Interlaminar Fracture Toughness Test
Experimental data on the interlaminar fracture toughness GIс and GIIс of layered polymeric composite materials based on carbon and glass fillers of various textile forms are given. The temperature effect in the range from 24 to 150°C on the interlayer fracture toughness under mode II for unidirectional CFRP T-800HB/VSE-1212 and particular fractographic destruction are described.
Keywords: : interlaminar fracture toughness, fracture mode, laminate
Reference List
1. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6.
S. 520–530.
2. Erasov V.S., Jakovlev N.O., Nuzhnyj G.A. Kvalifikacionnye ispytanija i issledovanija prochnosti aviacionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–447.
3. Dimitrienko Ju.I., Gubareva E.A., Sborshhikov S.V., Erasov V.S., Jakovlev N.O. Chislennoe modelirovanie i jeksperimental'noe issledovanie deformirovanija uprugoplasticheskih plastin pri smjatii [Numerical modeling and pilot study of deformation of elasto-plastic plates when crushing] // Matematicheskoe modelirovanie i chislennye metody. 2015. №1 (5). S. 67–82.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
5. Dimitrienko Ju.I., Fedonjuk N.N., Gubareva E.A., Sborshhikov S.V., Prozorovskij A.A., Erasov V.S., Jakovlev N.O. Modelirovanie i razrabotka trehslojnyh kompozicionnyh materialov s sotovym zapolnitelem [Modeling and development of three-layered composite materials with cellular filler] // Vestnik Moskovskogo gosudarstvennogo tehnicheskogo universiteta im. N.Je. Baumana. Ser.: Estestvennye nauki. 2014. №5 (56). S. 66–81.
6. Kablov E.N., Kondrashov S.V., Jurkov G.Ju. Perspektivy ispol'zovanija uglerodsoderzhashhih nanochastic v svjazujushhih dlja polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] // Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
7. Erasov V.S., Jakovlev N.O., Gladkih A.V., Goncharov A.A., Skiba O.V., Bojarskih A.V., Podzhivotov N.Ju. Ispytanija krupnogabaritnyh konstrukcij [Tests of large-size designs] // Kompozitnyj mir. 2014. №1. S. 72–78.
8. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitel'nyh konstrukcijah [Application of polymeric composite materials in construction designs]// Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2013. №8. St. 03. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015).
9. Jakovlev N.O., Erasov V.S., Popov Ju.O., Kolokol'ceva T.V. Razdir po mode III tonkolistovyh polimernyh kompozicionnyh materialov dlja izdelij aviacionnoj tehniki [Tearing on mode of the III tonkolistovy polymeric composite materials for products of aviation engineering] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2014. №6. St. 12. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015). DOI: 10.18577/2307-6046-2014-6-12-12.
10. Borshhev A.V., Gusev Ju.A. Polimernye kompozicionnye materialy v avtomobil'noj promyshlennosti [Polymeric composite materials in automotive industry] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 34–38.
11. Mahsidov V.V., Jakovlev N.O., Il'ichev A.V., Shienok A.M. Izmerenie deformacii ugleplastika s pomoshh'ju integrirovannyh v ego strukturu volokonnyh brjeggovskih reshetok [Deformation measurement ugleplastika by means of the fiber Bragg grids integrated into its structure] // Mehanika kompozicionnyh materialov i konstrukcij. 2015. T. 21. №3. S. 360–369.
12. Amelina E.V., Golushko S.K., Erasov V.S., Idimeshev S.V., Nemirovskij Ju.V., Semisalov B.V., Jurchenko A.V., Jakovlev N.O. O nelinejnom deformirovanii ugleplastikov: jeksperiment, model', raschet [About nonlinear deformation ugleplastikov: experiment, model, calculation] // Vychislitel'nye tehnologii. 2015. T. 20. №5. S. 27–52.
13. Dimitrienko Ju.I., Jakovlev D.O. Asimptoticheskaja teorija termouprugosti mnogoslojnyh kompozitnyh plastin [Asymptotic theory of thermoelasticity of composite composite wafers] // Mehanika kompozicionnyh materialov i konstrukcij. 2014. T. 20. №2. S. 259–282.
14. Guljaev A.I., Tenchurin T.H. Perspektivy primenenija voloknistyh struktur, poluchennyh sposobom jelektroformovanija, dlja povyshenija udaro- i treshhinostojkosti polimernyh kompozicionnyh materialov [Perspectives of application of the fibrous structures received in the way of electroformation, for increase udaro-and treshchinostoykost of polymeric composite materials] // Konstrukcii iz kompozicionnyh materialov. 2013. №3. C. 22–26.
15. Jakovlev N.O., Lucenko A.N., Artem'eva I.V. Metody opredelenija mezhsloevoj treshhinostojkosti sloistyh materialov [Methods of definition of mezhsloyevy treshchinostoykost of layered materials] // Vse materialy. Jenciklopedicheskij spravochnik. 2015. №10. S. 57–62.
16. Jakovlev N.O., Erasov V.S., Petrova A.P. Sravnenie normativnyh baz razlichnyh stran po ispytaniju kleevyh soedinenij materialov [Comparison of regulatory bases of the different countries on testing of glued joints of materials] // Vse materialy. Jenciklopedicheskij spravochnik. 2014. №7.
S. 2–8.
17. Jakovlev N.O., Guljaev A.I., Lashov O.A. Treshhinostojkost' sloistyh polimernyh kompozicionnyh materialov (obzor) [Treshchinostoykost of layered polymeric composite materials (rеview)]// Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2016. (v pechati). Available at: http://www.viam-works.ru
18. Krylov V.D., Jakovlev N.O., Kurganova Ju.A., Lashov O.A. Mezhsloevaja treshhinostojkost' konstrukcionnyh polimernyh kompozicionnyh materialov [Mezhsloyevy treshchinostoykost of constructional polymeric composite materials] // Aviacionnye materialy i tehnologii. 2016. №1.
S. 79–85.
19. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokolenija [Ugleplastiki and fibreglasses of new generation] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015).
20. Babin A.N. Svjazujushhie dlja polimernyh kompozicionnyh materialov novogo pokolenija [Binding for polymeric composite materials of new generation] // Trudy VIAM. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015).
21. Muhametov R.R., Shimkin A.A., Guljaev A.I., Kucherovskij A.I. Ftalonitril'noe svjazujushhee dlja termostojkih kompozitov [Ftalonitrilnoye binding for heat-resistant composites] // Materialovedenie. 2015. №11. S. 48–53.
22. Guljaev A.I., Zhuravleva P.L. Metodologicheskie voprosy analiza fazovoj morfologii materialov na osnove sinteticheskih smol, modificirovannyh termoplastami (obzor) [Methodological questions of the analysis of phase morphology of materials on the basis of the synthetic pitches modified by thermoplastics (rеview)] // Trudy VIAM. 2015. №6. St. 09. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015). DOI: 10.18577/2307-6046-2015-6-9-9.
23. Finogenov G.N., Erasov V.S. Treshhinostojkost' polimernyh kompozitov pri mezhslojnyh otryve i sdvige [Treshchinostoykost of polymeric composites at interlaminar separation and shift] // Aviacionnye materialy i tehnologii. 2003. №3. S. 62–67.
24. Brian G. Falzon, Stephen C. Hawkins, Chi P. Huynh, Racim Radjef, Callum Brown. An investigation of Mode I and Mode II fracture toughness enhancement using aligned carbon nanotubes forests at the crack interface // Composite Structures. 2013. V. 106. P. 65–73.
25. Guljaev A.I., Jakovlev N.O., Krylov V.D., Shurtakov S.V. Mikromehanika razrushenija stekloplastikov pri rassloenii po modam I i II [Microfracture mechanics of fibreglasses at stratification on modes of I and II] // Materialovedenie. 2016. (v pechati).
26. Guljaev A.I., Zhuravleva P.L., Filonova E.V., Antjufeeva N.V. Vlijanie otverditelja kataliticheskogo dejstvija na morfologiju mikrostruktury jepoksidnyh ugleplastikov [Influence of hardener of catalytic action on morphology of microstructure epoxy ugleplastikov] // Materialovedenie. 2015. №5. S. 41–46.
S. 520–530.
2. Erasov V.S., Jakovlev N.O., Nuzhnyj G.A. Kvalifikacionnye ispytanija i issledovanija prochnosti aviacionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–447.
3. Dimitrienko Ju.I., Gubareva E.A., Sborshhikov S.V., Erasov V.S., Jakovlev N.O. Chislennoe modelirovanie i jeksperimental'noe issledovanie deformirovanija uprugoplasticheskih plastin pri smjatii [Numerical modeling and pilot study of deformation of elasto-plastic plates when crushing] // Matematicheskoe modelirovanie i chislennye metody. 2015. №1 (5). S. 67–82.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
5. Dimitrienko Ju.I., Fedonjuk N.N., Gubareva E.A., Sborshhikov S.V., Prozorovskij A.A., Erasov V.S., Jakovlev N.O. Modelirovanie i razrabotka trehslojnyh kompozicionnyh materialov s sotovym zapolnitelem [Modeling and development of three-layered composite materials with cellular filler] // Vestnik Moskovskogo gosudarstvennogo tehnicheskogo universiteta im. N.Je. Baumana. Ser.: Estestvennye nauki. 2014. №5 (56). S. 66–81.
6. Kablov E.N., Kondrashov S.V., Jurkov G.Ju. Perspektivy ispol'zovanija uglerodsoderzhashhih nanochastic v svjazujushhih dlja polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] // Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
7. Erasov V.S., Jakovlev N.O., Gladkih A.V., Goncharov A.A., Skiba O.V., Bojarskih A.V., Podzhivotov N.Ju. Ispytanija krupnogabaritnyh konstrukcij [Tests of large-size designs] // Kompozitnyj mir. 2014. №1. S. 72–78.
8. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitel'nyh konstrukcijah [Application of polymeric composite materials in construction designs]// Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2013. №8. St. 03. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015).
9. Jakovlev N.O., Erasov V.S., Popov Ju.O., Kolokol'ceva T.V. Razdir po mode III tonkolistovyh polimernyh kompozicionnyh materialov dlja izdelij aviacionnoj tehniki [Tearing on mode of the III tonkolistovy polymeric composite materials for products of aviation engineering] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2014. №6. St. 12. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015). DOI: 10.18577/2307-6046-2014-6-12-12.
10. Borshhev A.V., Gusev Ju.A. Polimernye kompozicionnye materialy v avtomobil'noj promyshlennosti [Polymeric composite materials in automotive industry] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 34–38.
11. Mahsidov V.V., Jakovlev N.O., Il'ichev A.V., Shienok A.M. Izmerenie deformacii ugleplastika s pomoshh'ju integrirovannyh v ego strukturu volokonnyh brjeggovskih reshetok [Deformation measurement ugleplastika by means of the fiber Bragg grids integrated into its structure] // Mehanika kompozicionnyh materialov i konstrukcij. 2015. T. 21. №3. S. 360–369.
12. Amelina E.V., Golushko S.K., Erasov V.S., Idimeshev S.V., Nemirovskij Ju.V., Semisalov B.V., Jurchenko A.V., Jakovlev N.O. O nelinejnom deformirovanii ugleplastikov: jeksperiment, model', raschet [About nonlinear deformation ugleplastikov: experiment, model, calculation] // Vychislitel'nye tehnologii. 2015. T. 20. №5. S. 27–52.
13. Dimitrienko Ju.I., Jakovlev D.O. Asimptoticheskaja teorija termouprugosti mnogoslojnyh kompozitnyh plastin [Asymptotic theory of thermoelasticity of composite composite wafers] // Mehanika kompozicionnyh materialov i konstrukcij. 2014. T. 20. №2. S. 259–282.
14. Guljaev A.I., Tenchurin T.H. Perspektivy primenenija voloknistyh struktur, poluchennyh sposobom jelektroformovanija, dlja povyshenija udaro- i treshhinostojkosti polimernyh kompozicionnyh materialov [Perspectives of application of the fibrous structures received in the way of electroformation, for increase udaro-and treshchinostoykost of polymeric composite materials] // Konstrukcii iz kompozicionnyh materialov. 2013. №3. C. 22–26.
15. Jakovlev N.O., Lucenko A.N., Artem'eva I.V. Metody opredelenija mezhsloevoj treshhinostojkosti sloistyh materialov [Methods of definition of mezhsloyevy treshchinostoykost of layered materials] // Vse materialy. Jenciklopedicheskij spravochnik. 2015. №10. S. 57–62.
16. Jakovlev N.O., Erasov V.S., Petrova A.P. Sravnenie normativnyh baz razlichnyh stran po ispytaniju kleevyh soedinenij materialov [Comparison of regulatory bases of the different countries on testing of glued joints of materials] // Vse materialy. Jenciklopedicheskij spravochnik. 2014. №7.
S. 2–8.
17. Jakovlev N.O., Guljaev A.I., Lashov O.A. Treshhinostojkost' sloistyh polimernyh kompozicionnyh materialov (obzor) [Treshchinostoykost of layered polymeric composite materials (rеview)]// Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2016. (v pechati). Available at: http://www.viam-works.ru
18. Krylov V.D., Jakovlev N.O., Kurganova Ju.A., Lashov O.A. Mezhsloevaja treshhinostojkost' konstrukcionnyh polimernyh kompozicionnyh materialov [Mezhsloyevy treshchinostoykost of constructional polymeric composite materials] // Aviacionnye materialy i tehnologii. 2016. №1.
S. 79–85.
19. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokolenija [Ugleplastiki and fibreglasses of new generation] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015).
20. Babin A.N. Svjazujushhie dlja polimernyh kompozicionnyh materialov novogo pokolenija [Binding for polymeric composite materials of new generation] // Trudy VIAM. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015).
21. Muhametov R.R., Shimkin A.A., Guljaev A.I., Kucherovskij A.I. Ftalonitril'noe svjazujushhee dlja termostojkih kompozitov [Ftalonitrilnoye binding for heat-resistant composites] // Materialovedenie. 2015. №11. S. 48–53.
22. Guljaev A.I., Zhuravleva P.L. Metodologicheskie voprosy analiza fazovoj morfologii materialov na osnove sinteticheskih smol, modificirovannyh termoplastami (obzor) [Methodological questions of the analysis of phase morphology of materials on the basis of the synthetic pitches modified by thermoplastics (rеview)] // Trudy VIAM. 2015. №6. St. 09. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015). DOI: 10.18577/2307-6046-2015-6-9-9.
23. Finogenov G.N., Erasov V.S. Treshhinostojkost' polimernyh kompozitov pri mezhslojnyh otryve i sdvige [Treshchinostoykost of polymeric composites at interlaminar separation and shift] // Aviacionnye materialy i tehnologii. 2003. №3. S. 62–67.
24. Brian G. Falzon, Stephen C. Hawkins, Chi P. Huynh, Racim Radjef, Callum Brown. An investigation of Mode I and Mode II fracture toughness enhancement using aligned carbon nanotubes forests at the crack interface // Composite Structures. 2013. V. 106. P. 65–73.
25. Guljaev A.I., Jakovlev N.O., Krylov V.D., Shurtakov S.V. Mikromehanika razrushenija stekloplastikov pri rassloenii po modam I i II [Microfracture mechanics of fibreglasses at stratification on modes of I and II] // Materialovedenie. 2016. (v pechati).
26. Guljaev A.I., Zhuravleva P.L., Filonova E.V., Antjufeeva N.V. Vlijanie otverditelja kataliticheskogo dejstvija na morfologiju mikrostruktury jepoksidnyh ugleplastikov [Influence of hardener of catalytic action on morphology of microstructure epoxy ugleplastikov] // Materialovedenie. 2015. №5. S. 41–46.
24.
№6, 2015
УДК 620.197
Maksimov V.G.1
HIGH TEMPERATURE CERAMIC HEAT INSULATION (review)
Keywords: Ceramic composite oxide-based materials last years more and more use in environments where metal materials exhibit a tendency to creep and oxidation.
Aluminum oxide is one of the most promising ceramic materials for a wide range of applications in extreme conditions thanks to its combination of high hardness, heat resistance, chemical inertness, with its accessibility and efficiency. However, the use of alumina-based materials in loaded conditions is limited for the low impact resistance, typic
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
3. Kablov E.N. Tendencii i orientiry innovacionnogo razvitija Rossii [Tendencies and reference points of innovative development of Russia]: Sb. nauch.-inform. mater. 3-e izd. M.: VIAM. 2015. 720 s.
4. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevast'janov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlja perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] //Steklo i keramika. 2012. №4. S. 7–11.
5. Zimichev A.M., Solov'eva E.P. Volokno dioksida cirkonija dlja vysokotemperaturnogo primenenija (obzor) [Zirconium dioxide fiber for high-temperature application (rеview)] //Aviacionnye materialy i tehnologii. №3. 2014. S. 55–61.
6. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
7. Hybrid ceramic material composed of insulating and structural ceramic layers: Pat. US 6733907; publ. 11.05.2004. 14 p.
8. Kompanija Siemens AG [Company Siemens AG]. Available at: http://www.siemens.com (accessed: October 28, 2015).
9. Kompanija Solar Turbines [Company Solar Turbines]. Available at: http:// www.solarturbines.com (accessed: October 28, 2015).
10. Mutassim Z. New Gas Turbines Materials //Turbomashinery International. 2008. September–October. P. 38–42.
11. Fiber reinforced ceramic matrix composite member and method for making: Pat. US 5601674; publ. 11.02.1997. 10 p.
12. Method of producing а ceramic matrix composite: Pat. US 7153379; publ. 26.12.2006. 7 p.
13. Desimone D. Oxide Fibre Reinforced Glass Matrix Composites with ZrO2 interfaces //European Journal of Glass Science & Technology. 2009. P. 1. V. 50. №2. P. 121–126.
14. Mall S., Ahn J.-M. Frequency Effects on Fatigue Behavior of Nextel 720/alumina at Room //Temperature Journal of the European Ceramic Society. 2008. V. 28. №14. P. 2783–2789.
15. Ruggles-Wrenn M.B., Szymczak N.R. Effect of Steam Environment on Compressive Creep Behavior of Nextel 720/alumina Ceramic Composite at 1200°C //Сomposites. 2008. Part A. V. 39. P. 1829–1837.
16. Balinova Ju.A., Shheglova T.M., Ljuljukina G.Ju., Timoshin A.S. Osobennosti formirovanija α-Al2O3 v polikristallicheskih voloknah s soderzhaniem oksida aljuminija 99% v prisutstvii dobavok Fe2O3, MgO, SiO2 [Features of forming α-Al2O3 in polycrystalline fibers with the content of aluminum oxide of 99% in the presence of additives of Fe2O3, MgO, SiO2] //Trudy VIAM. 2014. №3. St. 03 (www.viam-works.ru).
17. Babashov V.G. Varrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizoljacionnyj material [High-temperature flexible fibrous heatinsulating material] //Trudy VIAM. 2015. № 1. St. 03 (www.viam-works.ru).
18. Lugovoj A.A., Babashov V.G., Karpov Ju.V. Temperaturoprovodnost' gradientnogo tep-loizoljacionnogo materiala [Temperaturoprovodnost of gradient heatinsulating material] //Trudy VIAM. 2014. №2. St. 02 (www.viam-works.ru).
2. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
3. Kablov E.N. Tendencii i orientiry innovacionnogo razvitija Rossii [Tendencies and reference points of innovative development of Russia]: Sb. nauch.-inform. mater. 3-e izd. M.: VIAM. 2015. 720 s.
4. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevast'janov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlja perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] //Steklo i keramika. 2012. №4. S. 7–11.
5. Zimichev A.M., Solov'eva E.P. Volokno dioksida cirkonija dlja vysokotemperaturnogo primenenija (obzor) [Zirconium dioxide fiber for high-temperature application (rеview)] //Aviacionnye materialy i tehnologii. №3. 2014. S. 55–61.
6. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
7. Hybrid ceramic material composed of insulating and structural ceramic layers: Pat. US 6733907; publ. 11.05.2004. 14 p.
8. Kompanija Siemens AG [Company Siemens AG]. Available at: http://www.siemens.com (accessed: October 28, 2015).
9. Kompanija Solar Turbines [Company Solar Turbines]. Available at: http:// www.solarturbines.com (accessed: October 28, 2015).
10. Mutassim Z. New Gas Turbines Materials //Turbomashinery International. 2008. September–October. P. 38–42.
11. Fiber reinforced ceramic matrix composite member and method for making: Pat. US 5601674; publ. 11.02.1997. 10 p.
12. Method of producing а ceramic matrix composite: Pat. US 7153379; publ. 26.12.2006. 7 p.
13. Desimone D. Oxide Fibre Reinforced Glass Matrix Composites with ZrO2 interfaces //European Journal of Glass Science & Technology. 2009. P. 1. V. 50. №2. P. 121–126.
14. Mall S., Ahn J.-M. Frequency Effects on Fatigue Behavior of Nextel 720/alumina at Room //Temperature Journal of the European Ceramic Society. 2008. V. 28. №14. P. 2783–2789.
15. Ruggles-Wrenn M.B., Szymczak N.R. Effect of Steam Environment on Compressive Creep Behavior of Nextel 720/alumina Ceramic Composite at 1200°C //Сomposites. 2008. Part A. V. 39. P. 1829–1837.
16. Balinova Ju.A., Shheglova T.M., Ljuljukina G.Ju., Timoshin A.S. Osobennosti formirovanija α-Al2O3 v polikristallicheskih voloknah s soderzhaniem oksida aljuminija 99% v prisutstvii dobavok Fe2O3, MgO, SiO2 [Features of forming α-Al2O3 in polycrystalline fibers with the content of aluminum oxide of 99% in the presence of additives of Fe2O3, MgO, SiO2] //Trudy VIAM. 2014. №3. St. 03 (www.viam-works.ru).
17. Babashov V.G. Varrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizoljacionnyj material [High-temperature flexible fibrous heatinsulating material] //Trudy VIAM. 2015. № 1. St. 03 (www.viam-works.ru).
18. Lugovoj A.A., Babashov V.G., Karpov Ju.V. Temperaturoprovodnost' gradientnogo tep-loizoljacionnogo materiala [Temperaturoprovodnost of gradient heatinsulating material] //Trudy VIAM. 2014. №2. St. 02 (www.viam-works.ru).
25.
№4, 2015
УДК 678.844
Chaykun A.M.1, Naumov I.S.1, Venediktova M.A.1, Alifanov E.V.1
MODERN APPROACHES TO CREATION OF COMPOUNDING OF SPECIAL RUBBERS ON BASIS OF FLUOROSILICATE GROW RUBBERS (review)
The overview shows modern tendencies in synthesis of fluorosilicone virgin rubbers and vulcanizate rubbers Such approach is very actual. Serious increase of exploitation intensity of aircrafts claims new requirements to rubbers used. First of all these are increase in temperature range of exploitation and improvement of exploitation parameters.
That is why improvement of rubbers on these bases based on fluorosilicone virgin rubbers as these provide wide temperature range of exploitation and have high working characteristics. Rubbers based on silicone virgin rubbers can work in air at wide temperature range. However they have low fuel- and oil resistance. High-molecular fluorosilicone virgin and vulcanizate rubbers have balanced combination of resistance to aggressive environment and good working ability in wide temperature range.
Improving rubber compositions based on above-mentioned virgin rubbers allows to improve their exploitation parameters and thus increase the working tim
Keywords: rubber, rubber compounds, fluorosilicone rubbers.
Reference List
1. Bol'shoj spravochnik rezinshhika [Big directory of rezinshchik]. V 2 ch. M.: Tehinform. 2012. 1385 s.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34) S. 3–33.
3. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Razrabotka i modificirovanie jelastomernyh materialov dlja primenenija vo vseklimaticheskih uslovijah [Development and modifying of elastomeric materials for application in vseklimatichesky conditions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 309–314.
4. Mahlis F.A., Fedjukin D.L. Terminologicheskij spravochnik po rezine [Terminological directory on rubber]. M.: Himija. 1989. 400 s.
5. Tehnologija reziny: Recepturostroenie i ispytanija [Technology of rubber: Retsepturostroyeniye and tests]: Per. s angl. /Pod red. Dzh.S. Dika. SPb.: Nauchnye osnovy i tehnologii. 2010. 620 s.
6. Shvejcer F.A. Korrozija plastmass i rezin. SPb.: Nauchnye osnovy i tehnologii [Scientific bases and technologies]. 2010. 637 s.
7. Martin Dzh. M., Smit U.K. Proizvodstvo i primenenie rezinotehnicheskih izdelij [Production and application of industrial rubber products]: Per. s angl. /Pod red. S.Ch. Bhati. SPb.: Professija. 2006. 480 s.
8. Chajkun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti morozostojkih rezin na osnove razlichnyh kauchukov [Features of cold-resistant rubbers on the basis of different rubbers] //Trudy VIAM. 2013. №12. St. 04 (viam-works.ru).
9. Chajkun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti postroenija receptur dlja morozostojkih rezin [Features of creation of compoundings for cold-resistant rubbers] //Aviacionnye materialy i tehnologii. 2013. №3. S. 53–55.
10. Ito M., Yukutake S., Osawa O., Ueki H. Adhesion and Reinforcement of CNT-fluoroelastomers Composite for Oilfield Application /In: Symposium of Japan. 2013 (onepetro.org).
УДК 621.792
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34) S. 3–33.
3. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Razrabotka i modificirovanie jelastomernyh materialov dlja primenenija vo vseklimaticheskih uslovijah [Development and modifying of elastomeric materials for application in vseklimatichesky conditions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 309–314.
4. Mahlis F.A., Fedjukin D.L. Terminologicheskij spravochnik po rezine [Terminological directory on rubber]. M.: Himija. 1989. 400 s.
5. Tehnologija reziny: Recepturostroenie i ispytanija [Technology of rubber: Retsepturostroyeniye and tests]: Per. s angl. /Pod red. Dzh.S. Dika. SPb.: Nauchnye osnovy i tehnologii. 2010. 620 s.
6. Shvejcer F.A. Korrozija plastmass i rezin. SPb.: Nauchnye osnovy i tehnologii [Scientific bases and technologies]. 2010. 637 s.
7. Martin Dzh. M., Smit U.K. Proizvodstvo i primenenie rezinotehnicheskih izdelij [Production and application of industrial rubber products]: Per. s angl. /Pod red. S.Ch. Bhati. SPb.: Professija. 2006. 480 s.
8. Chajkun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti morozostojkih rezin na osnove razlichnyh kauchukov [Features of cold-resistant rubbers on the basis of different rubbers] //Trudy VIAM. 2013. №12. St. 04 (viam-works.ru).
9. Chajkun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti postroenija receptur dlja morozostojkih rezin [Features of creation of compoundings for cold-resistant rubbers] //Aviacionnye materialy i tehnologii. 2013. №3. S. 53–55.
10. Ito M., Yukutake S., Osawa O., Ueki H. Adhesion and Reinforcement of CNT-fluoroelastomers Composite for Oilfield Application /In: Symposium of Japan. 2013 (onepetro.org).
УДК 621.792
26.
№4, 2015
УДК 678.049:541.126
Rozenenkova V.A.1, Zhuravleva P.L.1
PRECERAMIC POLYMER COMPOUNDS FOR CERAMIC MATRIX COMPOSITES
It is shown that application of some polyreactive organic-silicon and organic compounds allows to carry out process of cure polikarbosilanovy binding in the inert environment. On the basis of results of the research which has been carried out with attraction of methods of the thermogravimetric analysis (TGA), the rentgenofazovy analysis (RFA) and an ekstraktsiya, it is established that curing binding are products of interaction of initial components. Further pyrolysis leads to formation of the inorganic matrixes, which exit in 1,3 times above, than an yield pyrolyzates initial components.
Keywords: ceramic precursors, polycarbosilane, oligosilazane, cure, pyrolysis, ceramic matrixs, amorphous silicon carbide.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1(34). S. 3–33.
2. Kablov E.N., Solncev S.S., Rozenenkova V.A., Mironova N.A. Kompozicionnye steklokeramicheskie pokrytija dlja zashhity berillija pri vysokih temperaturah [Composition steklokeramichesky coverings for protection of beryllium at high temperatures] //Steklo i keramika. 2012. №4. S. 12−15.
3. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
4. Minakov V.T., Solncev S.S. Keramomatrichnye kompozity [Keramomatrichnye composites] //Vse materialy. Jenciklopedicheskij spravochnik. 2007. №2. S. 5–9.
5. Grashhenkov D.V., Gunjaev G.M., Minakov V.T., Sorina T.G. SiC–SiC-kompozity, armirovannye nitevidnymi kristallami [The SiC/SiC-composites reinforced by filamentary crystals] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №5. S. 43–48.
6. Colombo Р., Mera G., Riedel R., Soraru G.D. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics //J. Am. Ceram. Soc. 2010. V. 7. №93. P. 1805–1837.
7. Shvec N.I., Minakov V.T., Papkov V.S., Buzin M.I., Bad'ina L.Ju., Shimkin A.A. Issledovanie termohimicheskih prevrashhenij polikarbosilanovyh prekursorov v keramicheskuju matricu [Ricerca di trasformazioni thermochemical di polikarbosilanovy precoursors in matrice di ceramica] //Zhurnal prikladnoj himii. 2014. T. 87. №6. S. 793–799.
2. Kablov E.N., Solncev S.S., Rozenenkova V.A., Mironova N.A. Kompozicionnye steklokeramicheskie pokrytija dlja zashhity berillija pri vysokih temperaturah [Composition steklokeramichesky coverings for protection of beryllium at high temperatures] //Steklo i keramika. 2012. №4. S. 12−15.
3. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
4. Minakov V.T., Solncev S.S. Keramomatrichnye kompozity [Keramomatrichnye composites] //Vse materialy. Jenciklopedicheskij spravochnik. 2007. №2. S. 5–9.
5. Grashhenkov D.V., Gunjaev G.M., Minakov V.T., Sorina T.G. SiC–SiC-kompozity, armirovannye nitevidnymi kristallami [The SiC/SiC-composites reinforced by filamentary crystals] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №5. S. 43–48.
6. Colombo Р., Mera G., Riedel R., Soraru G.D. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics //J. Am. Ceram. Soc. 2010. V. 7. №93. P. 1805–1837.
7. Shvec N.I., Minakov V.T., Papkov V.S., Buzin M.I., Bad'ina L.Ju., Shimkin A.A. Issledovanie termohimicheskih prevrashhenij polikarbosilanovyh prekursorov v keramicheskuju matricu [Ricerca di trasformazioni thermochemical di polikarbosilanovy precoursors in matrice di ceramica] //Zhurnal prikladnoj himii. 2014. T. 87. №6. S. 793–799.
27.
№4, 2015
УДК 620.17
COMPARISON OF THE GEOMETRICAL SIZES POLYMER MATRIX
COMPOSITE MATERIALS SAMPLES WHICH ARE USING
INTERNATIONAL ASTM STANDARDS AND DOMESTIC GOST
In this work comparison of geometry of samples specified in the international ASTM standards, on mechanical tests of Polymer Matrix Composite Materials and in the domestic GOST standards is carried out.
Keywords: mechanical tests, composite materials, carbon, fiberglass, organic plastic, stretching, compression, bending, shear, shear in the plane.
Reference List
1. Guljaev I.N., Zelenina I.V., Raskutin A.E. Ugleplastiki na osnove uglerodnyh tkanej importnogo proizvodstva i rossijskih rastvornyh svjazujushhih [Сarbon fibers on the basis of carbon fabrics of import production and the Russian solution binding]//Voprosy materialovedenija. 2014. №1 (77). S. 116–125.
2. Sloistyj kompozicionnyj material i izdelie, vypolnennoe iz nego [Layered composite material and the product which has been executed of it]: pat. 2238850 Ros. Federacija; opubl. 12.03.2003.
3. Litvinov V.B., Kobec L.P., Toksanbaev M.S., Deev I.S., Buchnev L.M. Strukturno-mehanicheskie svojstva vysokoprochnyh uglerodnyh volokon [Structural and mechanical properties of high-strength carbon fibers] //Kompozity i nanostruktury. 2011. №3. S. 36–50.
4. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokolenija [Сarbon fibers and fibreglasses of new generation]//Trudy VIAM. 2013. №4. St. 09 (viam-works.ru).
5. Prepreg i izdelie, vypolnennoe iz nego [Prepreg and the product which has been executed of it]: pat. 2427594 Ros. Federacija; opubl. 21.12.2009.
6. Jepoksidnoe svjazujushhee dlja prepregov, prepreg na ego osnove i izdelie, vypolnennoe iz nego [Epoxy binding for prepregs, prepreg on its basis and the product which has been executed of it]: pat. 2335515 Ros. Federacija; opubl. 25.10.2006.
7. Jepoksidnoe svjazujushhee, prepreg na ego osnove i izdelie, vypolnennoe iz nego [Epoxy binding, prepreg on its basis and the product which has been executed of it]: pat. 2424259 Ros. Federacija; opubl. 22.10.2009.
8. Adamov A.A., Laptev M.Ju., Gorshkova E.G. Analiz otechestvennoj i zarubezhnoj normativnoj bazy po mehanicheskim ispytanijam polimernyh kompozicionnyh materialov [The analysis of domestic and foreign regulatory base on mechanical tests of polymeric composite materials] //Konstrukcii iz kompozicionnyh materialov. 2012. №3. S. 72–77.
9. Shah V. Spravochnoe rukovodstvo po ispytanijam plastmass i analizu prichin ih razrushenija [Reference guide on tests of plastic and the analysis of the reasons of their destruction]: Per. s angl. SPb.: Nauchnye osnovy i tehnologii. 2009. 732 s.
10. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). C. 3–33.
11. Efimov V.A., Shvedkova A.K., Koren'kova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh uslovijah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions]//Aviacionnye materialy i tehnologii. 2013. №S2. S. 68–73.
12. Zozulja V.V., Martynenko A.V., Lukin A.N. Mehanika materialov [Mechanics of materials]. M.: «NUVD». 2001. 404 s.
13. Vasil'ev V.V. Mehanika konstrukcij iz kompozicionnyh materialov [Mechanics of designs from composite materials]. M.: Mashinostroenie. 1988. 272 s.
14. Cherepanov G.P. Mehanika razrushenija kompozicionnyh materialov [Fracture mechanics of composite materials]. M.: Nauka. 1983. 296 s.
15. Vil'deman V.Je., Tret'jakova (Sannikova) T.V., Tret'jakov M.P. Jeksperimental'noe issledovanie zakonomernostej deformirovanija i razrushenija materialov pri ploskom naprjazhennom sostojanii [Pilot study of patterns of deformation and destruction of materials at flat tension] //Problemy mashinostroenija i nadezhnosti mashin. 2010. №5. S. 106–111.
16. Il'ichev A.V. Sravnenie standartov GOST i ASTM dlja provedenija mehanicheskih ispytanij PKM na rastjazhenie [Comparison of state standard specifications and ASTM standards for carrying out mechanical tests of PKM on stretching] //Vse materialy. Jenciklopedicheskij spra-vochnik. 2015. №8. S. 2–9.
17. Doneckij K.I., Kogan D.I., Hrul'kov A.V. Svojstva polimernyh kompozi-cionnyh materialov, izgotovlennyh na osnove pletenyh preform [Properties of the polymeric composite materials made on the basis of wattled preform]//Trudy VIAM. 2014. №3. St. 05 (viam-works.ru).
18. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PKM]//Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
19. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svjazujushhie dlja perspektivnyh metodov izgotovlenija PKM novogo pokolenija [Molten binding for perspective methods of manufacturing of PKM of new generation]//Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
20. Muhametov R.R., Merkulova Ju.I., Chursova L.V. Termoreaktivnye polimernye svjazujushhie s prognoziruemym urovnem reologicheskih deformacionnyh svojstv [Thermosetting polymeric binding with predicted level of rheological deformation properties]//Klei. Germetiki. Tehnologii. 2012. №5. S. 19–21.
2. Sloistyj kompozicionnyj material i izdelie, vypolnennoe iz nego [Layered composite material and the product which has been executed of it]: pat. 2238850 Ros. Federacija; opubl. 12.03.2003.
3. Litvinov V.B., Kobec L.P., Toksanbaev M.S., Deev I.S., Buchnev L.M. Strukturno-mehanicheskie svojstva vysokoprochnyh uglerodnyh volokon [Structural and mechanical properties of high-strength carbon fibers] //Kompozity i nanostruktury. 2011. №3. S. 36–50.
4. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokolenija [Сarbon fibers and fibreglasses of new generation]//Trudy VIAM. 2013. №4. St. 09 (viam-works.ru).
5. Prepreg i izdelie, vypolnennoe iz nego [Prepreg and the product which has been executed of it]: pat. 2427594 Ros. Federacija; opubl. 21.12.2009.
6. Jepoksidnoe svjazujushhee dlja prepregov, prepreg na ego osnove i izdelie, vypolnennoe iz nego [Epoxy binding for prepregs, prepreg on its basis and the product which has been executed of it]: pat. 2335515 Ros. Federacija; opubl. 25.10.2006.
7. Jepoksidnoe svjazujushhee, prepreg na ego osnove i izdelie, vypolnennoe iz nego [Epoxy binding, prepreg on its basis and the product which has been executed of it]: pat. 2424259 Ros. Federacija; opubl. 22.10.2009.
8. Adamov A.A., Laptev M.Ju., Gorshkova E.G. Analiz otechestvennoj i zarubezhnoj normativnoj bazy po mehanicheskim ispytanijam polimernyh kompozicionnyh materialov [The analysis of domestic and foreign regulatory base on mechanical tests of polymeric composite materials] //Konstrukcii iz kompozicionnyh materialov. 2012. №3. S. 72–77.
9. Shah V. Spravochnoe rukovodstvo po ispytanijam plastmass i analizu prichin ih razrushenija [Reference guide on tests of plastic and the analysis of the reasons of their destruction]: Per. s angl. SPb.: Nauchnye osnovy i tehnologii. 2009. 732 s.
10. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). C. 3–33.
11. Efimov V.A., Shvedkova A.K., Koren'kova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh uslovijah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions]//Aviacionnye materialy i tehnologii. 2013. №S2. S. 68–73.
12. Zozulja V.V., Martynenko A.V., Lukin A.N. Mehanika materialov [Mechanics of materials]. M.: «NUVD». 2001. 404 s.
13. Vasil'ev V.V. Mehanika konstrukcij iz kompozicionnyh materialov [Mechanics of designs from composite materials]. M.: Mashinostroenie. 1988. 272 s.
14. Cherepanov G.P. Mehanika razrushenija kompozicionnyh materialov [Fracture mechanics of composite materials]. M.: Nauka. 1983. 296 s.
15. Vil'deman V.Je., Tret'jakova (Sannikova) T.V., Tret'jakov M.P. Jeksperimental'noe issledovanie zakonomernostej deformirovanija i razrushenija materialov pri ploskom naprjazhennom sostojanii [Pilot study of patterns of deformation and destruction of materials at flat tension] //Problemy mashinostroenija i nadezhnosti mashin. 2010. №5. S. 106–111.
16. Il'ichev A.V. Sravnenie standartov GOST i ASTM dlja provedenija mehanicheskih ispytanij PKM na rastjazhenie [Comparison of state standard specifications and ASTM standards for carrying out mechanical tests of PKM on stretching] //Vse materialy. Jenciklopedicheskij spra-vochnik. 2015. №8. S. 2–9.
17. Doneckij K.I., Kogan D.I., Hrul'kov A.V. Svojstva polimernyh kompozi-cionnyh materialov, izgotovlennyh na osnove pletenyh preform [Properties of the polymeric composite materials made on the basis of wattled preform]//Trudy VIAM. 2014. №3. St. 05 (viam-works.ru).
18. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PKM]//Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
19. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svjazujushhie dlja perspektivnyh metodov izgotovlenija PKM novogo pokolenija [Molten binding for perspective methods of manufacturing of PKM of new generation]//Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
20. Muhametov R.R., Merkulova Ju.I., Chursova L.V. Termoreaktivnye polimernye svjazujushhie s prognoziruemym urovnem reologicheskih deformacionnyh svojstv [Thermosetting polymeric binding with predicted level of rheological deformation properties]//Klei. Germetiki. Tehnologii. 2012. №5. S. 19–21.
28.
№3, 2015
УДК 621.373.826
P.N. Kilina1, A.M. Khanov1, E.A. Morozov1, L.D. Sirotenko1
USE OF TECHNOLOGY OF THE SELECTION LASER AGGLOMERATION FOR RECEIVING IMPLANTS WITH CELLULAR STRUCTURE
The results of the application of selective laser sintering technology to produce implants composed of regular geometric shape cellular structures was shown. Computer 3D-model designs created in the Delcam PowerShape CAD system. Laser sintering was performed at the installation Realizer SLM 50 at various laser intensities. Stainless steel and titanium powders with an average particle size of 30 microns were used as the initial material.
Obtained cellular samples that were implanted in laboratory animals. After the introduction of implants for six months integral indicators characterizing the general condition of the animals were evaluated. Indices were within normal limits, the rejection of implants wasn’t observed.
Keywords: selective laser sintering, 3D-model, Wigner–Seitz cell, cellular implants, metal powders.
Reference List
1. Syam W.P., Mannan M.A., Al-Ahmari A.M. Rapid prototyping and rapid manufacturing in medicine and dentistry //Virtual and Physical Prototyping. 2011. V. 6. №2. P. 79–109.
2. Mullen L. et al. Selective laser melting: a unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. II. Randomized structures //Journal of Biomedical Materials Research. Part B Applied Biomaterials. 2010.
V. 92. №1. P. 178–188.
3. Hench L., Dzhons D. Biomaterialy, iskusstvennye organy i inzhiniring tkanej [Biomaterials, artificial organs and engineering of fabrics]. M.: Tehnosfera. 2007. 304 s.
4. Pattanayak D.K. et al. Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments //Acta Biomaterialia. 2011. V. 7. №3. P. 1398–406.
5. Capel A.J. et al. Design and additive manufacture for flow chemistry //Lab Chip. 2013. V. 13. №23. P. 4583–4590.
6. Mazzoli A. Selective laser sintering in biomedical engineering //Medical & Biological Engineering & Computing. 2013. V. 51. №3. P. 245–256.
7. Anciferov V.N., Porozova S.E. Vysokoporistye jacheistye materialy [High-porous cellular materials]. Perm': Izd-vo Perm. gos. tehnich. un-ta. 1996. 207 s.
8. Ashkroft N., Mermin N. Fizika tverdogo tela [Solid state physics]. T. 1. M.: Mir. 1979. 399 s.
9. Vasiljuk V.P. i dr. Jeksperimental'noe obosnovanie primenenija innovacionnyh tehnologij v izgotovlenii implantov, imejushhih jacheistuju strukturu, dlja zameshhenija kostnyh defektov licevogo skeleta (predvaritel'nye rezul'taty) [Experimental justification of application of innovative technologies in manufacturing of the implants having cellular structure, for substitution of bone defects of facial skeleton (preliminary results)] //Zdorov'e sem'i – 21 vek. 2014. №2. S. 42–54.
2. Mullen L. et al. Selective laser melting: a unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. II. Randomized structures //Journal of Biomedical Materials Research. Part B Applied Biomaterials. 2010.
V. 92. №1. P. 178–188.
3. Hench L., Dzhons D. Biomaterialy, iskusstvennye organy i inzhiniring tkanej [Biomaterials, artificial organs and engineering of fabrics]. M.: Tehnosfera. 2007. 304 s.
4. Pattanayak D.K. et al. Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments //Acta Biomaterialia. 2011. V. 7. №3. P. 1398–406.
5. Capel A.J. et al. Design and additive manufacture for flow chemistry //Lab Chip. 2013. V. 13. №23. P. 4583–4590.
6. Mazzoli A. Selective laser sintering in biomedical engineering //Medical & Biological Engineering & Computing. 2013. V. 51. №3. P. 245–256.
7. Anciferov V.N., Porozova S.E. Vysokoporistye jacheistye materialy [High-porous cellular materials]. Perm': Izd-vo Perm. gos. tehnich. un-ta. 1996. 207 s.
8. Ashkroft N., Mermin N. Fizika tverdogo tela [Solid state physics]. T. 1. M.: Mir. 1979. 399 s.
9. Vasiljuk V.P. i dr. Jeksperimental'noe obosnovanie primenenija innovacionnyh tehnologij v izgotovlenii implantov, imejushhih jacheistuju strukturu, dlja zameshhenija kostnyh defektov licevogo skeleta (predvaritel'nye rezul'taty) [Experimental justification of application of innovative technologies in manufacturing of the implants having cellular structure, for substitution of bone defects of facial skeleton (preliminary results)] //Zdorov'e sem'i – 21 vek. 2014. №2. S. 42–54.
29.
№3, 2015
УДК 621.373.826
V.M. Fomin1, A.G. Malikov1, A.M. Orishich1, A.O. Tokarev2
MICROSTRUCTURE AT LASER FUSING METAL POWDERS
The paper deals with research conducted at ITAM SB RAS laser welding nickel-chromium and iron powder on a steel plate in order to obtain bimetallic wear-resistant coatings.
Keywords: laser cladding, micro-hardness, wear resistance, CO2-laser, bimetal, nickel-chrome plating, R6M5.
Reference List
1. Kruth J.P., Wang X., Laoui T., Froyen L. //Assem. Autom. 2003. V. 23. P. 357–371.
2. Brandl E., Heckenberger U., Holzinger V., Buchbinder D. //Mater. Des. 2012. V. 34. Р. 159–169.
3. Gu D.D., Shen Y.F. et al. //J. Alloys Compd. 2007. №438. Р. 184–189.
4. Kruth J.P., Levy G. et al. //CIRP Ann. 2007. V. 56.
Р. 730–759.
5. Vandenbroucke B., Kruth J.P. //Rapid Prototyping J. 2007. V. 13. Р. 196–203.
6. Gu D.D., Shen Y.F. //Mater. Des. 2009. V. 30. Р. 2903–2910.
7. Gu D.D., Shen Y.F. //J. Alloy Compd. 2007. №432.
P. 163–166.
8. Mumtaz K.A., Hopkinson N. //J. Mater. Process Technol. 2010. V. 210. P. 279–287.
9. Mumtaz K., Hopkinson N. //Rapid Prototyping J. 2009. V. 15. P. 96–103.
10. Hofmeister W., Griffith M. et al. //OM. 2001. V. 53.
P. 30–34.
11. Wang H.M., Zhang S.Q., Wang X.M. //Chin. J. Lasers. 2009. V. 36. P. 3204–3209.
12. Facchini L., Magalini E., Robotti P., Molinari A., Ho¨ges S., Wissenbach K. //Rapid Prototyping J. 2010. V. 16. P. 450–459.
13. Gu D.D., Meiners W., Wissenbach K., Poprawe R. Laser additive manufacturing of metallic components: materials, processes and mechanisms //Int. Mater. Rev. 2012. V. 57. P. 133–164.
14. Klimenov V.A. i dr. Issledovanie struktury i fazovogo sostava plazmennogo pokrytija na osnove nikelevogo splava posle vozdejstvija lazernogo izluchenija [Research of structure and phase structure of plasma covering on the basis of nickel alloy after influence of laser radiation] //FHOM. 1996. №2. S. 68–77.
15. Nizhnikovskaja P.F., Kalinushkin E.P., Arshova E.V., Jakushev S.S. Vlijanie skorosti ohlazhdenija na mehanizm i kinetiku fazovyh prevrashhenij pri zatverdevanii W–Mo-bystrorezhushhih stalej [Influence of cooling rate on the mechanism and kinetics of phase transformations when hardening W–Maud-fast-cutting staly] //MiTOM. 1987. №9. S. 7–11.
16. Nizhnikovskaja P.F., Kalinushkin E.P., Snagovskij L.M., Demchenko G.F. Formirovanie struktury bystrorezhushhih stalej pri kristallizacii [Forming of structure fast-cutting staly at crystallization] //MiTOM. 1982. №11. S. 23–30.
17. Ozerskij A.D., Fishmajster X., Oslon L., Popova G.A. Struktura bystrorezhushhih stalej pri bol'shih skorostjah zatverdevanija [Structure fast-cutting staly at big speeds of hardening] //MiTOM. 1984. №3. S. 19–24.
18. Andrijahin V.M. Processy lazernoj svarki i termoobrabotki [Processes of laser bonding and heat treatment]. M.: Nauka. 1988. 176 s.
19. Sadovskij V.D., Schastlivcev V.M., Tabatchikova G.I. i dr. Lazernyj nagrev i struktura stali [Laser heating and structure became]. Sverdlovsk. 1985. 100 s.
20. Tehnologicheskie lazery [Technological lasers]: Spravochnik. T. 1 /Pod red. G.A. Abil'siitova. M.: Mashinostroenie. 1991. 432 s.
21. Arhipov V.E., Ablaev A.A., Geletin I.V. i dr. Osobennosti lazernoj naplavki pri razlichnyh sposobah podachi poroshka [Features of laser welding at different ways of giving of powder] //Svarochnoe proizvodstvo. 1992. №3. S. 4–6.
2. Brandl E., Heckenberger U., Holzinger V., Buchbinder D. //Mater. Des. 2012. V. 34. Р. 159–169.
3. Gu D.D., Shen Y.F. et al. //J. Alloys Compd. 2007. №438. Р. 184–189.
4. Kruth J.P., Levy G. et al. //CIRP Ann. 2007. V. 56.
Р. 730–759.
5. Vandenbroucke B., Kruth J.P. //Rapid Prototyping J. 2007. V. 13. Р. 196–203.
6. Gu D.D., Shen Y.F. //Mater. Des. 2009. V. 30. Р. 2903–2910.
7. Gu D.D., Shen Y.F. //J. Alloy Compd. 2007. №432.
P. 163–166.
8. Mumtaz K.A., Hopkinson N. //J. Mater. Process Technol. 2010. V. 210. P. 279–287.
9. Mumtaz K., Hopkinson N. //Rapid Prototyping J. 2009. V. 15. P. 96–103.
10. Hofmeister W., Griffith M. et al. //OM. 2001. V. 53.
P. 30–34.
11. Wang H.M., Zhang S.Q., Wang X.M. //Chin. J. Lasers. 2009. V. 36. P. 3204–3209.
12. Facchini L., Magalini E., Robotti P., Molinari A., Ho¨ges S., Wissenbach K. //Rapid Prototyping J. 2010. V. 16. P. 450–459.
13. Gu D.D., Meiners W., Wissenbach K., Poprawe R. Laser additive manufacturing of metallic components: materials, processes and mechanisms //Int. Mater. Rev. 2012. V. 57. P. 133–164.
14. Klimenov V.A. i dr. Issledovanie struktury i fazovogo sostava plazmennogo pokrytija na osnove nikelevogo splava posle vozdejstvija lazernogo izluchenija [Research of structure and phase structure of plasma covering on the basis of nickel alloy after influence of laser radiation] //FHOM. 1996. №2. S. 68–77.
15. Nizhnikovskaja P.F., Kalinushkin E.P., Arshova E.V., Jakushev S.S. Vlijanie skorosti ohlazhdenija na mehanizm i kinetiku fazovyh prevrashhenij pri zatverdevanii W–Mo-bystrorezhushhih stalej [Influence of cooling rate on the mechanism and kinetics of phase transformations when hardening W–Maud-fast-cutting staly] //MiTOM. 1987. №9. S. 7–11.
16. Nizhnikovskaja P.F., Kalinushkin E.P., Snagovskij L.M., Demchenko G.F. Formirovanie struktury bystrorezhushhih stalej pri kristallizacii [Forming of structure fast-cutting staly at crystallization] //MiTOM. 1982. №11. S. 23–30.
17. Ozerskij A.D., Fishmajster X., Oslon L., Popova G.A. Struktura bystrorezhushhih stalej pri bol'shih skorostjah zatverdevanija [Structure fast-cutting staly at big speeds of hardening] //MiTOM. 1984. №3. S. 19–24.
18. Andrijahin V.M. Processy lazernoj svarki i termoobrabotki [Processes of laser bonding and heat treatment]. M.: Nauka. 1988. 176 s.
19. Sadovskij V.D., Schastlivcev V.M., Tabatchikova G.I. i dr. Lazernyj nagrev i struktura stali [Laser heating and structure became]. Sverdlovsk. 1985. 100 s.
20. Tehnologicheskie lazery [Technological lasers]: Spravochnik. T. 1 /Pod red. G.A. Abil'siitova. M.: Mashinostroenie. 1991. 432 s.
21. Arhipov V.E., Ablaev A.A., Geletin I.V. i dr. Osobennosti lazernoj naplavki pri razlichnyh sposobah podachi poroshka [Features of laser welding at different ways of giving of powder] //Svarochnoe proizvodstvo. 1992. №3. S. 4–6.
30.
№3, 2015
УДК 669.018.95
A.A. Shavnev1, B.В. Berezovsky1, Yu.А. Kyrganova2
SPECIFICITY OF METAL MATRIX COMPOSITES BASED
ON ALUMINUM ALLOY REINFORCED BY SIC PARTICLES
APPLICATION. PART I (review)
International technological review of Al–SiC system metal matrix composites application is shown. Application examples of this metal matrix composites is shown. There is an information about basic specificities and demands of all applications is applied in examples. Special attention is devoted to specificity of construction analysis which caused the selection of this composite. Composite structure and technology of it manufacturing is described. Advantages of these composite materials is noted.
Keywords: Keywords: metal matrix composites, composites reinforced by SiC particles, composites based on aluminum alloy.
Reference List
materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic the direction of development of materials and technologies of their processing for the period till 2030]
//Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
2. Tarasov Ju.M., Antipov V.V. Novye materialy VIAM – dlja perspektivnoj aviacionnoj tehniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC OAK]
//Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
3. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
4. Kablov E.N., Shhetanov B.V., Grashhenkov D.V., Shavnev A.A., Njafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al‒SiC [Metalmatrix composite materials on the basis of
Al‒SiC] //Aviacionnye materialy i tehnologii. 2012. № S.
S. 373–380.
5. Kablov E.N., Chibirkin V.V., Vdovin S.M. Izgotovlenie, svojstva i primenenie teplootvodjashhih osnovanij iz MMK Al–SiC v silovoj jelektronike i preobrazovatel'noj tehnike [Manufacturing, properties and application of the heat-removing bases from Al–SiC MMK in power electronics and converting equipment] //Aviacionnye materialy i tehnologii. 2012. №2. S. 20–22.
6. Lebedeva Ju.E., Popovich N.V., Orlova L.A. Zashhitnye vysokotemperaturnye pokrytija dlja kompozicionnyh materialov na osnove SiC [Protective high temperature coatings for composite materials on the basis of SiC]
//Trudy VIAM. 2013. №2. St. 06 (viam-works.ru).
7. MIL-HDBK-5J: Department of defence handbook: Metallic materials and elements for aerospace vehicles structures. 2003. 1731 р.
8. Kurganova Ju.A. Perspektivy razvitija metallomatrichnyh kompazicionnyh materialov promyshlennogo naznachenija [Perspectives of development of metalmatrix composite materials of industrial function] //Servis v Rossii i za rubezhom. 2012. T. 30. №3. S. 235–240.
9. Kurganova Ju.A., Chernysheva T.A., Kobeleva L.I., Kurganov S.V. Jekspluatacionnye harakteristiki aljumomatrichnyh dispersnouprochnennyh kompozicionnyh materialov i perspektivy ih ispol'zovanija na sovremennom rynke konstrukcionnyh materialov [Utilization properties of alyumomatrichny dispersnouprochnenny composite materials and perspective of their use in the modern market of constructional materials] //Metally. 2011. №4. S. 71.
10. Chawla N., Chawla K.K. Metal Matrix Composites
/In: Springer Sience+Business Media. Inc. 2006. 401 p.
11. Beffort O. Metal Matrix composites (MMCs) from Space to Earth /In: Werkstoffe für Transport und Verkehr Materials Day. ETH-Zürich. 2001 (электронная
версия).
12. Evans A., Marchi C.S., Mortensen A. /In: Metal Matrix Composites in Industry. Kluwer Akademic Publishers. Dordrecht. 2003. XI. 423 p.
13. Di Russo E. Aluminium composite armour
//International defense review. 1988. №12. P. 1657–1658.
14. Ganesh V.V., Chawla N. Effect of Reinforcement-Particle-Orientation Anisotropy on the Tensile and Fatigue Behavior of Metal-Matrix Composites
//Metallurgical and materials transactions. 2003. V. 34A. №1. P. 52– 54.
15. Lloyd D.J. /In: Mallick PK, editor. Composite engineering handbook. New York: Marcel Dekker. 1997.
P. 63–70.
16. Austin L.K., Van den Bergh M., Cho A., Niedzinski M. Implementation of New Materials on Aging Aircraft Structure /In: New Metallic Materials for the Structure of Aging Aircraft. Greece, 19–20 April. 1999 (электронная версия).
17. Surappa M.K. Aluminum matrix composites: challenges and opportunities //Sadhana. 2003. V. 28. Parts 1–2.
P. 319–334.
18. EAA (European Aluminum Association), TALAT (Training in Aluminum Application Technologies) BOOK, Lecture 1402. Brussels, 1999.
19. Rawal S. Metal Matrix Composites for Space Applications //Journal of Materials. 2001. V. 53. P. 14–17.
20. Rittner M.N. Expanding World Markets for MMCs
//Journal of Materials. 2001. P. 43.
21. Hunt W.H., Herling D.R. Application of Aluminum Metal Matrix Composites: Past, Present and Future /In: International Symposium of Aluminum Applications, ASM Materials Solutions Conference. Oct. 2003.
Pittsburgh.
//Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
2. Tarasov Ju.M., Antipov V.V. Novye materialy VIAM – dlja perspektivnoj aviacionnoj tehniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC OAK]
//Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
3. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
4. Kablov E.N., Shhetanov B.V., Grashhenkov D.V., Shavnev A.A., Njafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al‒SiC [Metalmatrix composite materials on the basis of
Al‒SiC] //Aviacionnye materialy i tehnologii. 2012. № S.
S. 373–380.
5. Kablov E.N., Chibirkin V.V., Vdovin S.M. Izgotovlenie, svojstva i primenenie teplootvodjashhih osnovanij iz MMK Al–SiC v silovoj jelektronike i preobrazovatel'noj tehnike [Manufacturing, properties and application of the heat-removing bases from Al–SiC MMK in power electronics and converting equipment] //Aviacionnye materialy i tehnologii. 2012. №2. S. 20–22.
6. Lebedeva Ju.E., Popovich N.V., Orlova L.A. Zashhitnye vysokotemperaturnye pokrytija dlja kompozicionnyh materialov na osnove SiC [Protective high temperature coatings for composite materials on the basis of SiC]
//Trudy VIAM. 2013. №2. St. 06 (viam-works.ru).
7. MIL-HDBK-5J: Department of defence handbook: Metallic materials and elements for aerospace vehicles structures. 2003. 1731 р.
8. Kurganova Ju.A. Perspektivy razvitija metallomatrichnyh kompazicionnyh materialov promyshlennogo naznachenija [Perspectives of development of metalmatrix composite materials of industrial function] //Servis v Rossii i za rubezhom. 2012. T. 30. №3. S. 235–240.
9. Kurganova Ju.A., Chernysheva T.A., Kobeleva L.I., Kurganov S.V. Jekspluatacionnye harakteristiki aljumomatrichnyh dispersnouprochnennyh kompozicionnyh materialov i perspektivy ih ispol'zovanija na sovremennom rynke konstrukcionnyh materialov [Utilization properties of alyumomatrichny dispersnouprochnenny composite materials and perspective of their use in the modern market of constructional materials] //Metally. 2011. №4. S. 71.
10. Chawla N., Chawla K.K. Metal Matrix Composites
/In: Springer Sience+Business Media. Inc. 2006. 401 p.
11. Beffort O. Metal Matrix composites (MMCs) from Space to Earth /In: Werkstoffe für Transport und Verkehr Materials Day. ETH-Zürich. 2001 (электронная
версия).
12. Evans A., Marchi C.S., Mortensen A. /In: Metal Matrix Composites in Industry. Kluwer Akademic Publishers. Dordrecht. 2003. XI. 423 p.
13. Di Russo E. Aluminium composite armour
//International defense review. 1988. №12. P. 1657–1658.
14. Ganesh V.V., Chawla N. Effect of Reinforcement-Particle-Orientation Anisotropy on the Tensile and Fatigue Behavior of Metal-Matrix Composites
//Metallurgical and materials transactions. 2003. V. 34A. №1. P. 52– 54.
15. Lloyd D.J. /In: Mallick PK, editor. Composite engineering handbook. New York: Marcel Dekker. 1997.
P. 63–70.
16. Austin L.K., Van den Bergh M., Cho A., Niedzinski M. Implementation of New Materials on Aging Aircraft Structure /In: New Metallic Materials for the Structure of Aging Aircraft. Greece, 19–20 April. 1999 (электронная версия).
17. Surappa M.K. Aluminum matrix composites: challenges and opportunities //Sadhana. 2003. V. 28. Parts 1–2.
P. 319–334.
18. EAA (European Aluminum Association), TALAT (Training in Aluminum Application Technologies) BOOK, Lecture 1402. Brussels, 1999.
19. Rawal S. Metal Matrix Composites for Space Applications //Journal of Materials. 2001. V. 53. P. 14–17.
20. Rittner M.N. Expanding World Markets for MMCs
//Journal of Materials. 2001. P. 43.
21. Hunt W.H., Herling D.R. Application of Aluminum Metal Matrix Composites: Past, Present and Future /In: International Symposium of Aluminum Applications, ASM Materials Solutions Conference. Oct. 2003.
Pittsburgh.
31.
№2, 2015
УДК 004.925.84
L.B. Matyushkin1, N.V. Permiakov1
MECHANICAL UNIT WITH SAMPLE MOVEMENT FOR MEASUREMENT
OF SOLID AND LIQUID SAMPLES PHOTOLUMINESCENCE SPECTRA
An empowerment option for luminescence spectra apparatus using the 3D-printing of ABS-plastic extrusion technology is described. Photoluminescence spectra of commercially available fluorescence plastics used for 3D-printing are studied.
Keywords: material science lab, photoluminescence, prototyping, 3D-printer.
Reference List
1. Matyushkin L.B., Permiakov N.V. Primenenie tehnologii 3D-pechati v obespechenii professionalno orientirovannoy podgotovki kadrov v interesah nanoindustrii [Application of technology of the 3D-press in ensuring professionally oriented training in interests of nanoindustry]//Biotehnosfera. 2013. №3 (27). S. 38–47.
2. Zhang C, Anzalone NC, Faria RP, Pearce JM (2013) Open-Source 3D-Printable Optics Equipment. PLoS ONE 8(3): e59840. DOI: 10.1371/journal.pone.0059840
3. Alexsandrova O.A., Maximov A.I., Maraeva E.V. i dr. Sintez i samoorganizaciya kvantovyh tochek sulfida svinca dlya lyuminescentnyh struktur, poluchennyh metodom isparenija kolloidnogo rastvora [Synthesis and self-organization of quantum points of lead sulfide for the luminescent structures received by method of evaporation of colloidal solution]// Nano- i mikrosistemnaya tehnika. 2013. №2. S. 19–23.
4. Matyushkin L.B. Programmnoe obespechenie dlya issledovaniya spektrov pogloshheniya i lyuminescencii kvantovo-razmernyh nanostruktur [The software for research of reversal spectrums and luminescence of quantum-dimensional nanostructures] //Tehnicheskie nauki – ot teorii k praktike. 2013. №24. S. 154–158.
5. Mazing D.S., Alexsandrova O.A., Matyushkin L.B., Matyushkin V.A. Sintez kolloidnyh kvantovyh tochek selenida kadmiya v vodnoy srede [Synthesis of colloid quantum points of selenide of cadmium in the water environment]//Izvestiya Sankt-Peterburgskogo gosudarstvennogo yelektrotehnicheskogo universiteta LETI. 2014. №7. S. 15–19.
6. Matyushkin L.B., Alexsandrova O.A., Maximov A.I., Matyushkin V.A., Musihin S.F. Osobennosti sinteza lyuminescirujushhih poluprovodnikovyh nanochastic v polyarnyh i nepolyarnyh sredah [Features of synthesis of luminescing semiconductor nanoparticles in polar and unpolar environments]//Biotehnosfera. 2013. №2 (26). S. 27–32.
2. Zhang C, Anzalone NC, Faria RP, Pearce JM (2013) Open-Source 3D-Printable Optics Equipment. PLoS ONE 8(3): e59840. DOI: 10.1371/journal.pone.0059840
3. Alexsandrova O.A., Maximov A.I., Maraeva E.V. i dr. Sintez i samoorganizaciya kvantovyh tochek sulfida svinca dlya lyuminescentnyh struktur, poluchennyh metodom isparenija kolloidnogo rastvora [Synthesis and self-organization of quantum points of lead sulfide for the luminescent structures received by method of evaporation of colloidal solution]// Nano- i mikrosistemnaya tehnika. 2013. №2. S. 19–23.
4. Matyushkin L.B. Programmnoe obespechenie dlya issledovaniya spektrov pogloshheniya i lyuminescencii kvantovo-razmernyh nanostruktur [The software for research of reversal spectrums and luminescence of quantum-dimensional nanostructures] //Tehnicheskie nauki – ot teorii k praktike. 2013. №24. S. 154–158.
5. Mazing D.S., Alexsandrova O.A., Matyushkin L.B., Matyushkin V.A. Sintez kolloidnyh kvantovyh tochek selenida kadmiya v vodnoy srede [Synthesis of colloid quantum points of selenide of cadmium in the water environment]//Izvestiya Sankt-Peterburgskogo gosudarstvennogo yelektrotehnicheskogo universiteta LETI. 2014. №7. S. 15–19.
6. Matyushkin L.B., Alexsandrova O.A., Maximov A.I., Matyushkin V.A., Musihin S.F. Osobennosti sinteza lyuminescirujushhih poluprovodnikovyh nanochastic v polyarnyh i nepolyarnyh sredah [Features of synthesis of luminescing semiconductor nanoparticles in polar and unpolar environments]//Biotehnosfera. 2013. №2 (26). S. 27–32.
32.
№2, 2015
УДК 539.232+620.193.75+620.17
S.V. Gnedenkov1, S. L. Sinebryukhov1, D. V. Mashtalyar1, I. M. Imshinetskiy1, K.V. Nadaraia1, D.P. Kiryukhin2, V. M. Bouznik3
COMPOSITE FLUOROPOLYMERIC COATINGS
ON MAGNESIUM ALLOYS
Рresents the methods of forming at the surface of magnesium alloy MA8 composite polymer-containing coatings by plasma electrolytic oxidation with using various fluoroorganic materials. Composite coatings significantly increase corrosion and antifriction properties of magnesium alloys, reducing corrosion currents and wear of coatings by 6 and 4 orders of magnitude, respectively. This significantly reduces the probability of corrosion and mechanical damage of the protective coating during operation, and thus improves its reliability.
Keywords: рlasma electrolytic oxidation, magnesium alloys, superdispersed polytetrafluoroethylene, telomeric solutions, protective coatings.
Reference List
1. Gnedenkov S.V., Sinebrjuhov S.L., Sergienko V.I. Kompozicionnye mnogofunkcional'nye pokrytija na metallah i splavah, formiruemye plazmennym jelektroliticheskim oksidirovaniem [Composition multifunction coverings on metals and the alloys, created by plasma electrolytic oxidation]. Vladivostok: Dal'nauka. 2013. 460 s.
2. Suminov I.V., Belkin P.N., Jepel'fel'd A.V., Lju-
din V.B., Krit B.L., Borisov A.M. Plazmenno-jelektroliticheskoe modificirovanie poverhnosti metallov i splavov [Plasma and electrolytic modifying of surface of metals and alloys]. V 2 t. T. 1. M.: Tehnosfera. 2011. 464 s.
3. Suminov I.V., Jepel'fel'd A.V., Ljudin V.B., Krit B.L., Borisov A.M. Mikrodugovoe oksidirovanie (teorija, tehnologija, oborudovanie) [Microarc oksidirovaniye (theory, technology, equipment)]. M.: JeKOMET. 2005. 368 s.
4. Mamaev A.I., Mamaeva V.A. Sil'notokovye mikroplazmennye processy v rastvorah jelektrolitov [Silnotokovye microplasma processes in solutions of electrolits]. Novosibirsk: Izd-vo SO RAN. 2005. 255 s.
5. Yerokhin A.L., Nie X., Leyland A., Matthews A., Dowey S.J. Plasma electrolysis for surface engineering //Surface and Coatings Technology. 1999. V. 122. Р. 73–93.
6. Yerokhin A.L., Shatrov A., Samsonov V., Shashkov P., Leyland A., Matthews A. Fatigue properties of keronite coatings on a magnesium alloy // Surface and Coating Technology. 2004. V. 182. P. 78–84.
7. Gnedenkov S.V., Sinebrjuhov S.L., Hrisanfova O.A., Egorkin V.S., Mashtaljar D.V., Sidorova M.V., Gnedenkov A.S., Erohin A.L. Zashhitnye pokrytija na splave magnija MA8 [Protecting covers on MA8 magnesium alloy] //Korrozija: materialy, zashhita. 2010. №12. S. 18–30.
8. Gnedenkov A.S., Sinebrjuhov S.L., Mashtaljar D.V., Gnedenkov S.V. Issledovanie poverhnostnyh geterosloev metodom lokal'noj jelektrohimicheskoj impedansnoj spektroskopii [Research of surface heterolayers by method of local electrochemical impedance spectroscopy] //Himicheskaja fizika i mezoskopija. 2009. T. 11. №3. S. 345–352.
9. Sinebryukhov S.L., Gnedenkov A.S., Mashtalyar D.V., Gnedenkov S.V. PEO-coating/substrate interface investigation by localised electrochemical impedance spectroscopy //Surface and Coatings Technology. 2010. V. 205. N6. P. 1697–1701.
10. Gnedenkov S.V., Sinebryukhov S.L., Mashtalyar D.V., Egorkin V.S., Sidorova M.V., Gnedenkov A.S. Composite polymer-containing protective coatings on magnesium alloy MA8 //Corrosion Science. 2014. V. 85.
P. 52–59.
11. Aliofkhazraei M., Rouhaghdam A.S. Fabrication of functionally gradient nanocomposite coatings by plasma electrolytic oxidation based on variable duty cycle //Applied Surface Science. 2012. V. 258. №6.
P. 2093–2097.
12. Shabanova N.A., Popov V.V., Sarkisov P.D. Himija i tehnologija nanodispersnyh oksidov [Chemistry and technology of nanodisperse oxides]. M.: Akademkniga. 2007. 309 s.
13. Gnedenkov S.V., Khrisanfova, O.A., Zavidnaya A.G., Sinebryukhov S.L., Egorkin V.S., Nistratova M.V., Yerokhin A., Matthews A. PEO coatings obtained on an Mg–Mn type alloy under unipolar and bipolar modes in silicate-containing electrolytes //Surface and Coatings Technology. 2010. V. 204. P. 2316–2322.
14. Sidorova M.V., Sinebrukhov S.L., Khrisanfova O.A., Gnedenkov S.V. Effect of PEO-modes on the electrochemical and mechanical properties of coatings on MA8 magnesium alloy //Physics Procedia. 2012.
V. 23. P. 90–93.
15. Tovarnyj znak «FORUM», №140123.
16. Buznik V.M., Fomin V.M., Alhimov A.P., Ignat'-
eva L.N. i dr. Metallopolimernye nanokompozity [Metalpolymeric nanocomposites]. Novosibirsk: Izd-vo SO RAN. 2005. S. 260.
17. Sposob poluchenija tonkodispersnogo PTFJe i soderzhashhaja ego masljanaja kompozicija [Way of receiving finely dispersed PTFE and oil composition containing it]: pat. 2100376 Ros. Federacija; opubl. 27.12.1997.
18. Ftortelomery alkilketonov, sposoby ih poluchenija (varianty) i sposob poluchenija funkcional'nyh pokrytij na ih osnove [Ftortelomera alkilketonov, ways of their obtaining (options) and way of receiving functional coverings on their basis]: pat. 2381237 Ros. Federacija; opubl. 10.02.2010.
19. Gnedenkov S.V., Sinebrjuhov S.L., Mashtaljar D.V., Nadaraia K.V. Formirovanie zashhitnyh kompozicionnyh pokrytij na magnievom splave s ispol'zovaniem metoda PJeO i telomernogo rastvora [Forming of protective composition coverings on magnesium alloy with use of PEO method and telomerny solution] //Cvetnye metally (v pechati).
20. Kirjuhin D.P., Kim I.P., Buznik V.M. Radiacionno-himicheskij sintez telomerov tetraftorjetilena i ih ispol'zovanie dlja sozdanija tonkih zashhitnyh ftorpolimernyh pokrytij [Radiation chemical synthesis of telomeres of tetrafluorethylene and their use for creation of thin protective ftorpolimerny coverings]
//Rossijskij himicheskij zhurnal. 2008. T. 52. №3.
S. 66.
21. Sposob pererabotki politetraftorjetilena [Way of processing of polytetrafluoroethylene]: pat. 1775419 Ros. Federacija; opubl. 15.11.1992.
2. Suminov I.V., Belkin P.N., Jepel'fel'd A.V., Lju-
din V.B., Krit B.L., Borisov A.M. Plazmenno-jelektroliticheskoe modificirovanie poverhnosti metallov i splavov [Plasma and electrolytic modifying of surface of metals and alloys]. V 2 t. T. 1. M.: Tehnosfera. 2011. 464 s.
3. Suminov I.V., Jepel'fel'd A.V., Ljudin V.B., Krit B.L., Borisov A.M. Mikrodugovoe oksidirovanie (teorija, tehnologija, oborudovanie) [Microarc oksidirovaniye (theory, technology, equipment)]. M.: JeKOMET. 2005. 368 s.
4. Mamaev A.I., Mamaeva V.A. Sil'notokovye mikroplazmennye processy v rastvorah jelektrolitov [Silnotokovye microplasma processes in solutions of electrolits]. Novosibirsk: Izd-vo SO RAN. 2005. 255 s.
5. Yerokhin A.L., Nie X., Leyland A., Matthews A., Dowey S.J. Plasma electrolysis for surface engineering //Surface and Coatings Technology. 1999. V. 122. Р. 73–93.
6. Yerokhin A.L., Shatrov A., Samsonov V., Shashkov P., Leyland A., Matthews A. Fatigue properties of keronite coatings on a magnesium alloy // Surface and Coating Technology. 2004. V. 182. P. 78–84.
7. Gnedenkov S.V., Sinebrjuhov S.L., Hrisanfova O.A., Egorkin V.S., Mashtaljar D.V., Sidorova M.V., Gnedenkov A.S., Erohin A.L. Zashhitnye pokrytija na splave magnija MA8 [Protecting covers on MA8 magnesium alloy] //Korrozija: materialy, zashhita. 2010. №12. S. 18–30.
8. Gnedenkov A.S., Sinebrjuhov S.L., Mashtaljar D.V., Gnedenkov S.V. Issledovanie poverhnostnyh geterosloev metodom lokal'noj jelektrohimicheskoj impedansnoj spektroskopii [Research of surface heterolayers by method of local electrochemical impedance spectroscopy] //Himicheskaja fizika i mezoskopija. 2009. T. 11. №3. S. 345–352.
9. Sinebryukhov S.L., Gnedenkov A.S., Mashtalyar D.V., Gnedenkov S.V. PEO-coating/substrate interface investigation by localised electrochemical impedance spectroscopy //Surface and Coatings Technology. 2010. V. 205. N6. P. 1697–1701.
10. Gnedenkov S.V., Sinebryukhov S.L., Mashtalyar D.V., Egorkin V.S., Sidorova M.V., Gnedenkov A.S. Composite polymer-containing protective coatings on magnesium alloy MA8 //Corrosion Science. 2014. V. 85.
P. 52–59.
11. Aliofkhazraei M., Rouhaghdam A.S. Fabrication of functionally gradient nanocomposite coatings by plasma electrolytic oxidation based on variable duty cycle //Applied Surface Science. 2012. V. 258. №6.
P. 2093–2097.
12. Shabanova N.A., Popov V.V., Sarkisov P.D. Himija i tehnologija nanodispersnyh oksidov [Chemistry and technology of nanodisperse oxides]. M.: Akademkniga. 2007. 309 s.
13. Gnedenkov S.V., Khrisanfova, O.A., Zavidnaya A.G., Sinebryukhov S.L., Egorkin V.S., Nistratova M.V., Yerokhin A., Matthews A. PEO coatings obtained on an Mg–Mn type alloy under unipolar and bipolar modes in silicate-containing electrolytes //Surface and Coatings Technology. 2010. V. 204. P. 2316–2322.
14. Sidorova M.V., Sinebrukhov S.L., Khrisanfova O.A., Gnedenkov S.V. Effect of PEO-modes on the electrochemical and mechanical properties of coatings on MA8 magnesium alloy //Physics Procedia. 2012.
V. 23. P. 90–93.
15. Tovarnyj znak «FORUM», №140123.
16. Buznik V.M., Fomin V.M., Alhimov A.P., Ignat'-
eva L.N. i dr. Metallopolimernye nanokompozity [Metalpolymeric nanocomposites]. Novosibirsk: Izd-vo SO RAN. 2005. S. 260.
17. Sposob poluchenija tonkodispersnogo PTFJe i soderzhashhaja ego masljanaja kompozicija [Way of receiving finely dispersed PTFE and oil composition containing it]: pat. 2100376 Ros. Federacija; opubl. 27.12.1997.
18. Ftortelomery alkilketonov, sposoby ih poluchenija (varianty) i sposob poluchenija funkcional'nyh pokrytij na ih osnove [Ftortelomera alkilketonov, ways of their obtaining (options) and way of receiving functional coverings on their basis]: pat. 2381237 Ros. Federacija; opubl. 10.02.2010.
19. Gnedenkov S.V., Sinebrjuhov S.L., Mashtaljar D.V., Nadaraia K.V. Formirovanie zashhitnyh kompozicionnyh pokrytij na magnievom splave s ispol'zovaniem metoda PJeO i telomernogo rastvora [Forming of protective composition coverings on magnesium alloy with use of PEO method and telomerny solution] //Cvetnye metally (v pechati).
20. Kirjuhin D.P., Kim I.P., Buznik V.M. Radiacionno-himicheskij sintez telomerov tetraftorjetilena i ih ispol'zovanie dlja sozdanija tonkih zashhitnyh ftorpolimernyh pokrytij [Radiation chemical synthesis of telomeres of tetrafluorethylene and their use for creation of thin protective ftorpolimerny coverings]
//Rossijskij himicheskij zhurnal. 2008. T. 52. №3.
S. 66.
21. Sposob pererabotki politetraftorjetilena [Way of processing of polytetrafluoroethylene]: pat. 1775419 Ros. Federacija; opubl. 15.11.1992.
33.
№2, 2015
УДК 001.621:895
V.V. Smirnov1, V.V Barzali1, P.V. Ladnov1
EXPERIENCE OF ADDITIVE MANUFACTURING IN UFA STATE
AVIATION TECHNICAL UNIVERSITY (review)
The information about experience of additive manufacturing in Ufa State Aviation Technical University is presented. Key directions of the performed in the University works are identified. Authors present their own ideas about influence of additive manufacturing on the general ways of design approach. The notion of “integrated additive manufacturing” is being introduced. The information about investigation of economical efficiency of using additive technologies is announced.
Keywords: additive technologies, design, bionics, economical efficiency, mass production.
Reference List
1. Wohlers Report. Additive Manufacturing and 3D Printing State of the Industry Annual Worldwide Progress Report. 2014. 276 p.
2. PwC Analysis, 2013. URL: http://www.pwc.com
3. URL: http://www.eos.info
2. PwC Analysis, 2013. URL: http://www.pwc.com
3. URL: http://www.eos.info
34.
№2, 2015
УДК 621.762, 621.375.826, 681
.Yu. Smurov1, S.G. Konov1, D.V. Kotoban1
ON THE IMPLEMENTATION OF ADDITIVE TECHNOLOGIES
AND MANUFACTURING INTO THE RUSSIAN INDUSTRY
Advanced technologies of additive manufacturing are became widespread abroad. This article shows the application of additive manufacturing, technology research and technology commercialization prospects of additive manufacturing.
Keywords: additive manufacturing and technology, selective laser melting, selective electron beam melting, direct laser metal deposition, cold gas dynamic spraying.
Reference List
1. Romanova O.A. Strategicheskij vektor jekonomicheskoj dinamiki industrial'nogo regiona [Strategic vector of economic dynamics of the industrial region]
//Jekonomika regiona. 2014. №.1. S. 43–55.
2. Grigor'ev S.N., Smurov I.Ju. Perspektivy razvitija innovacionnogo additivnogo proizvodstva v Rossii i za rubezhom [Perspectives of development of innovative additive production in Russia and abroad] //Innovacii. 2013. V.10. S. 2–8.
3. Wohlers T., Wohlers report 2014: Additive manufacturing and 3D-printing state of the industry: Annual worldwide progress report, Wohlers Associates, 276 p.
4. Ye M. The Impact of 3D-Printing on the World Container Transport: TU Delft. Delft University of Technology. 2015. 156 p.
5. Loh L.E. et al. Selective Laser Melting of aluminium alloy using a uniform beam profile //Virtual and Physical Prototyping. 2014. V. 9. №1. P. 11–16.
6. Kanazawa M. et al. Fabrication of titanium alloy frameworks for complete dentures by selective laser melting //The Journal of prosthetic dentistry. 2014. V. 112. №6. P. 1441–1447.
7. Vrancken B. et al. Microstructure and mechanical properties of a novel β-titanium metallic composite by selective laser melting //Acta Materialia. 2014. V. 68. P. 150–158.
8. Song B. et al. Fabrication of NiCr alloy parts by selective laser melting: columnar micro-structure and anisotropic mechanical behavior //Materials & Design. 2014. V. 53. P. 1–7.
9. Yan C. et al. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting //Materials & Design. 2014. V. 55. P. 533–541.
10. Gu D. et al. Selective laser melting additive manufacturing of TiC/AlSi10Mg bulk-form nanocomposites with tailored microstructures and properties //Physics Procedia. 2014. V. 56. P. 108–116.
11. Krakhmalev P., Yadroitsev I. Microstructure and properties of intermetallic composite coatings fabricated by selective laser melting of Ti–SiC powder mixtures //Intermetallics. 2014. V. 46. P. 147–155.
12. Shishkovsky I.V., Morozov Yu.G., Volova L.T., Kuznetsov M.V. Comparative study of articles produced from titanium and nitinol powders by selective laser sintering (SLS) as porous scaffolds for stem cells //International Scientific Journal for Alternative Energy and Ecology. 2014. N 20 (160). P. 62–73.
13. Liu Q., Song B., Liao H. Microstructure study on selective laser melting yttria stabilized zirconia ceramic with near IR fiber laser //Rapid Prototyping Journal. 2014.
V. 20. №5. P. 346–354.
14. Childs T.H., Hauser C. Raster scan selective laser melting of the surface layer of a tool steel powder bed’. Proceedings of the Institution of Mechanical Engineers. 2005. V. 219. Part B. P. 379–384.
15. Yadroitsev I. et al. Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder //Applied Surface Science. 2007. V. 254. №4. P. 980–983.
16. Strano G. et al. Surface roughness analysis, modeling and prediction in selective laser melting //Journal of Materials Processing Technology. 2013. V. 213. №4.
P. 589–597.
17. Capel A.J. et al. Design and additive manufacture for flow chemistry //Lab on a Chip. 2013. V. 13. №23.
P. 4583–4590.
18. Bartolo P. et al. Biomedical production of implants by additive electro-chemical and physical processes //CIRP Annals-Manufacturing Technology. 2012. V. 61. №2. P. 635–655.
19. Klocke F., Wagner C., Ader C. Development of an integrated model for selective laser sintering. Proc. 36th CIRP International Seminar on Manufacturing Systems. June 03–05. 2003. Saarbrucken. Germany. P. 387–392.
20. Smurov I.Ju., Movchan I.A., Jadrojcev I.A., Okun'kova A.A., Cvetkova E.V., Cherkasova N.Ju. Additivnoe proizvodstvo s pomoshh'ju lazera [The additive production by means of the laser]. Vestnik MGTU «STANKIN» 2011. №4 (16).
21. Okunkova A. et al. Experimental approbation of selective laser melting of powders by the use of non-Gaussian power density distributions //Physics Procedia. 2014. V. 56. P. 48–57.
22. Peretjagin P.Ju., Okun'kova A.A. Povyshenie kachestva izdelij, poluchaemyh metodom selektivnogo jelektronno-luchevogo plavlenija s pomoshh'ju podbora optimal'nyh tehnologicheskih parametrov [Improvement of quality of the products received by method of the selection electron beam melting by means of selection of optimum technological parameters] //Sbornik trudov: Materialy i tehnologii XXI veka. HI Mezhdunarodnaja nauchno-tehnicheskaja konferencija. 2013. S. 111–114.
23. Kotoban D., Grigoriev S., Shishkovsky I. Study of
3D-laser cladding for Ni85Al15 super-alloy //Physics Procedia. 2014. V. 56. P. 262–268.
24. Sova A. et al. Potential of cold gas dynamic spray as additive manufacturing technology //The International Journal of Advanced Manufacturing Technology. 2013. V. 69. №9–12. P. 2269–2278.
25. Smurov I.Ju., Movchan I.A., Jadrojcev I.A., Okun'kova A.A., Konov S.G., Antonenkova G.V. Jeksperimental'noe additivnoe prjamoe proizvodstvo s pomoshh'ju lazera [Experimental additive direct production by means of the laser] //Vestnik MGTU «STANKIN». 2012. №2 (20).
26. Smurov I.Ju., Jadrojcev I.A., Movchan I.A., Okun'kova A.A., Cherkasova N.Ju., Antonenkova G.V. Additivnoe proizvodstvo s pomoshh'ju lazera. Provedenie jeksperimental'nyh rabot [The additive production by means of the laser. Carrying out experimental works] //Vestnik MGTU «STANKIN». 2012. №1 (18).
27. Doubenskaia M., Grigoriev S., Zhirnov I., Smurov I. Parametric analysis of SLM using comprehensive optical monitoring //Rapid Prototyping Journal. V. 22. №1. Р. 144–156.
28. Teleshevskij V.I., Zhirnov I.V., Dubenskaja M.A., Konov S.G. Beskontaktnoe izmerenie temperatury na poverhnosti materiala INOX 304 L v zone lazernogo vozdejstvija [Contactless temperature measurement on material INOX 304 L surface in zone of laser influence] //Vestnik MGTU «STANKIN». 2013. №4 (27). S. 61–64.
29. Nazarov A.S. Fotogrammetrija [Photogrammetry]. Mn.: TetraSistems. 2006.
30. Konov S.G., Loginov A.A., Krutov A.V. Sistema slezhenija za prostranstvennymi peremeshhenijami podvizhnyh uzlov stankov i robototehniki [System of tracking space movements of slide assemblies of machines and robotics]
//Izmeritel'naja tehnika. M.: FGUP «Rossijskij nauchno-tehnicheskij centr informacii po standartizacii, metrologii i ocenke sootvetstvija». 2012. №2. S. 10–12.
31. Konov S.G. Razrabotka koordinatno-izmeritel'noj mashiny kontaktnogo tipa na baze fotogrammetricheskoj sistemy [Development of the coordinate metering machine of contact type on the basis of photogrammetric system] //Vestnik MGTU «STANKIN». 2010. №2.
S. 119–121.
//Jekonomika regiona. 2014. №.1. S. 43–55.
2. Grigor'ev S.N., Smurov I.Ju. Perspektivy razvitija innovacionnogo additivnogo proizvodstva v Rossii i za rubezhom [Perspectives of development of innovative additive production in Russia and abroad] //Innovacii. 2013. V.10. S. 2–8.
3. Wohlers T., Wohlers report 2014: Additive manufacturing and 3D-printing state of the industry: Annual worldwide progress report, Wohlers Associates, 276 p.
4. Ye M. The Impact of 3D-Printing on the World Container Transport: TU Delft. Delft University of Technology. 2015. 156 p.
5. Loh L.E. et al. Selective Laser Melting of aluminium alloy using a uniform beam profile //Virtual and Physical Prototyping. 2014. V. 9. №1. P. 11–16.
6. Kanazawa M. et al. Fabrication of titanium alloy frameworks for complete dentures by selective laser melting //The Journal of prosthetic dentistry. 2014. V. 112. №6. P. 1441–1447.
7. Vrancken B. et al. Microstructure and mechanical properties of a novel β-titanium metallic composite by selective laser melting //Acta Materialia. 2014. V. 68. P. 150–158.
8. Song B. et al. Fabrication of NiCr alloy parts by selective laser melting: columnar micro-structure and anisotropic mechanical behavior //Materials & Design. 2014. V. 53. P. 1–7.
9. Yan C. et al. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting //Materials & Design. 2014. V. 55. P. 533–541.
10. Gu D. et al. Selective laser melting additive manufacturing of TiC/AlSi10Mg bulk-form nanocomposites with tailored microstructures and properties //Physics Procedia. 2014. V. 56. P. 108–116.
11. Krakhmalev P., Yadroitsev I. Microstructure and properties of intermetallic composite coatings fabricated by selective laser melting of Ti–SiC powder mixtures //Intermetallics. 2014. V. 46. P. 147–155.
12. Shishkovsky I.V., Morozov Yu.G., Volova L.T., Kuznetsov M.V. Comparative study of articles produced from titanium and nitinol powders by selective laser sintering (SLS) as porous scaffolds for stem cells //International Scientific Journal for Alternative Energy and Ecology. 2014. N 20 (160). P. 62–73.
13. Liu Q., Song B., Liao H. Microstructure study on selective laser melting yttria stabilized zirconia ceramic with near IR fiber laser //Rapid Prototyping Journal. 2014.
V. 20. №5. P. 346–354.
14. Childs T.H., Hauser C. Raster scan selective laser melting of the surface layer of a tool steel powder bed’. Proceedings of the Institution of Mechanical Engineers. 2005. V. 219. Part B. P. 379–384.
15. Yadroitsev I. et al. Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder //Applied Surface Science. 2007. V. 254. №4. P. 980–983.
16. Strano G. et al. Surface roughness analysis, modeling and prediction in selective laser melting //Journal of Materials Processing Technology. 2013. V. 213. №4.
P. 589–597.
17. Capel A.J. et al. Design and additive manufacture for flow chemistry //Lab on a Chip. 2013. V. 13. №23.
P. 4583–4590.
18. Bartolo P. et al. Biomedical production of implants by additive electro-chemical and physical processes //CIRP Annals-Manufacturing Technology. 2012. V. 61. №2. P. 635–655.
19. Klocke F., Wagner C., Ader C. Development of an integrated model for selective laser sintering. Proc. 36th CIRP International Seminar on Manufacturing Systems. June 03–05. 2003. Saarbrucken. Germany. P. 387–392.
20. Smurov I.Ju., Movchan I.A., Jadrojcev I.A., Okun'kova A.A., Cvetkova E.V., Cherkasova N.Ju. Additivnoe proizvodstvo s pomoshh'ju lazera [The additive production by means of the laser]. Vestnik MGTU «STANKIN» 2011. №4 (16).
21. Okunkova A. et al. Experimental approbation of selective laser melting of powders by the use of non-Gaussian power density distributions //Physics Procedia. 2014. V. 56. P. 48–57.
22. Peretjagin P.Ju., Okun'kova A.A. Povyshenie kachestva izdelij, poluchaemyh metodom selektivnogo jelektronno-luchevogo plavlenija s pomoshh'ju podbora optimal'nyh tehnologicheskih parametrov [Improvement of quality of the products received by method of the selection electron beam melting by means of selection of optimum technological parameters] //Sbornik trudov: Materialy i tehnologii XXI veka. HI Mezhdunarodnaja nauchno-tehnicheskaja konferencija. 2013. S. 111–114.
23. Kotoban D., Grigoriev S., Shishkovsky I. Study of
3D-laser cladding for Ni85Al15 super-alloy //Physics Procedia. 2014. V. 56. P. 262–268.
24. Sova A. et al. Potential of cold gas dynamic spray as additive manufacturing technology //The International Journal of Advanced Manufacturing Technology. 2013. V. 69. №9–12. P. 2269–2278.
25. Smurov I.Ju., Movchan I.A., Jadrojcev I.A., Okun'kova A.A., Konov S.G., Antonenkova G.V. Jeksperimental'noe additivnoe prjamoe proizvodstvo s pomoshh'ju lazera [Experimental additive direct production by means of the laser] //Vestnik MGTU «STANKIN». 2012. №2 (20).
26. Smurov I.Ju., Jadrojcev I.A., Movchan I.A., Okun'kova A.A., Cherkasova N.Ju., Antonenkova G.V. Additivnoe proizvodstvo s pomoshh'ju lazera. Provedenie jeksperimental'nyh rabot [The additive production by means of the laser. Carrying out experimental works] //Vestnik MGTU «STANKIN». 2012. №1 (18).
27. Doubenskaia M., Grigoriev S., Zhirnov I., Smurov I. Parametric analysis of SLM using comprehensive optical monitoring //Rapid Prototyping Journal. V. 22. №1. Р. 144–156.
28. Teleshevskij V.I., Zhirnov I.V., Dubenskaja M.A., Konov S.G. Beskontaktnoe izmerenie temperatury na poverhnosti materiala INOX 304 L v zone lazernogo vozdejstvija [Contactless temperature measurement on material INOX 304 L surface in zone of laser influence] //Vestnik MGTU «STANKIN». 2013. №4 (27). S. 61–64.
29. Nazarov A.S. Fotogrammetrija [Photogrammetry]. Mn.: TetraSistems. 2006.
30. Konov S.G., Loginov A.A., Krutov A.V. Sistema slezhenija za prostranstvennymi peremeshhenijami podvizhnyh uzlov stankov i robototehniki [System of tracking space movements of slide assemblies of machines and robotics]
//Izmeritel'naja tehnika. M.: FGUP «Rossijskij nauchno-tehnicheskij centr informacii po standartizacii, metrologii i ocenke sootvetstvija». 2012. №2. S. 10–12.
31. Konov S.G. Razrabotka koordinatno-izmeritel'noj mashiny kontaktnogo tipa na baze fotogrammetricheskoj sistemy [Development of the coordinate metering machine of contact type on the basis of photogrammetric system] //Vestnik MGTU «STANKIN». 2010. №2.
S. 119–121.
35.
№2, 2015
УДК 621.762.55
P.A. Kuznetcov1, O.V. Vasileva1, A.I. Telenkov1, V.I. Savin1, V.V. Bobyr1
ADDITIVE TECHNOLOGY ON BASED METAL POWDER MATERIALS
FOR RUSSIAN INDUSTRY
The paper presents possibilities of using in engineering the advanced additive technology of volumetric laser cladding and selective laser sintering for complex parts creating and worn elements reconditioning of various purposes products from metal powder materials.
The possibilities of the technological chain from production of metal powders to finished coatings and products creating based on a single set.
Keywords: selective laser sintering, laser cladding, metal powders, engineering, medicine.
Reference List
1. Dovbysh V.M., Zabednov P.V., Zlenko M.А. Аdditivnye tekhnologii i izdeliya iz metalla [The additive technologies and metal wares]. URL: www.nami.ru/upload/AT_metall.pdf
2. Shishkovskij I.V. Lazernyj sintez funktsional'no-gradientnykh mezostruktur i ob"emnykh izdelij [Laser synthesis of functional and gradient mesostructures and volume products]. M.: FIZMАTLIT. 2009. s. 424.
3. Tereshhenko А.V., Bobyr V.V., Savin V.I. Issledovanie vliyaniya parametrov lazernogo izlucheniya na geometriyu naplavlyaemogo materiala po tekhnologii LENS [Research of influence of parameters of laser radiation on geometry of naplavlyaemy material on the LENS technology] //Metalloobrabotka. 2012. №1 (67).
S. 28–32.
4. Oryshhenko А.S., Kuznetsov P.А., Bobyr V.V.,
Savin V.I., Tereshhenko А.V. Primenenie tekhnologij selektivnogo lazernogo spekaniya i ob"emnoj lazernoj naplavki dlya sozdaniya i vosstanovleniya detalej, ispol'zuemykh v mashinostroenii [Application of technologies of the selection laser agglomeration and volume laser welding for creation and recovery of the details used in mechanical engineering] //Progressivnye tekhnologii i sistemy mashinostroeniya. 2013. №1,
2 (46). S. 238–244.
2. Shishkovskij I.V. Lazernyj sintez funktsional'no-gradientnykh mezostruktur i ob"emnykh izdelij [Laser synthesis of functional and gradient mesostructures and volume products]. M.: FIZMАTLIT. 2009. s. 424.
3. Tereshhenko А.V., Bobyr V.V., Savin V.I. Issledovanie vliyaniya parametrov lazernogo izlucheniya na geometriyu naplavlyaemogo materiala po tekhnologii LENS [Research of influence of parameters of laser radiation on geometry of naplavlyaemy material on the LENS technology] //Metalloobrabotka. 2012. №1 (67).
S. 28–32.
4. Oryshhenko А.S., Kuznetsov P.А., Bobyr V.V.,
Savin V.I., Tereshhenko А.V. Primenenie tekhnologij selektivnogo lazernogo spekaniya i ob"emnoj lazernoj naplavki dlya sozdaniya i vosstanovleniya detalej, ispol'zuemykh v mashinostroenii [Application of technologies of the selection laser agglomeration and volume laser welding for creation and recovery of the details used in mechanical engineering] //Progressivnye tekhnologii i sistemy mashinostroeniya. 2013. №1,
2 (46). S. 238–244.
36.
№2, 2015
A.N. Lutsenko1
From the editor-in-chief