Articles
Structural metallic materials
1.
№3, 2016
УДК 621.7
Galkin V.I.1, Golovkina M.G.1
Forecasting of mechanical properties distribution by volume of articles, obtained by the method of hot deformation with the use of CAE-systems
Prediction of distribution of mechanical properties on the volume of the products received by methods of hot deformation with use of CAE-systems.
In this work the technique of research of influence of parameters of deformation process on distribution of mechanical properties of products of aluminum alloys is presented. Functional dependences of mechanical characteristics on intensity of deformation, temperature and speed of cooling are received. The software application for SAE-systems which allows to predict mechanical properties of products from aluminum alloys is created.
Keywords: aluminum alloys, mechanical properties, prediction, СAE-system.
Reference List
1. Galkin V.I., Petrov A.P., Paltievich A.R. Osobennosti primeneniya konechno-elementnogo analiza protsessov obrabotki metallov davleniem i perspektivy prognozirovaniya struktury i svoystv izdeliy [Features of application of the final and element analysis of processes of processing of metals pressure and prospects of forecasting of structure and properties of products] // Tekhnologiya mashinostroeniya. 2007. №9. S. 12–14.
2. Berezhnoy V.L. Analiz i formalizatsiya predstavleniya o neravnomernosti deformatsiy dlya tekhnologicheskogo razvitiya pressovaniya [The analysis and formalization of idea of unevenness of deformations for technological development of pressing] // Tekhnologiya legkikh splavov. 2013. №1. S. 40–57.
3. Schikorra M., Donati L., Tomesani L., Tekkaya A.E. Microstructure analysis of aluminum extrusion: grain size distribution in AA6060, AA6082 and AA7075 alloys // Journal of Mechanical Science and Technology. 2007. October. 21:1445-1451.
2. Berezhnoy V.L. Analiz i formalizatsiya predstavleniya o neravnomernosti deformatsiy dlya tekhnologicheskogo razvitiya pressovaniya [The analysis and formalization of idea of unevenness of deformations for technological development of pressing] // Tekhnologiya legkikh splavov. 2013. №1. S. 40–57.
3. Schikorra M., Donati L., Tomesani L., Tekkaya A.E. Microstructure analysis of aluminum extrusion: grain size distribution in AA6060, AA6082 and AA7075 alloys // Journal of Mechanical Science and Technology. 2007. October. 21:1445-1451.
2.
№3, 2016
УДК 669.02/.09
Galkin V.I.1, Evseev P.S.1, Galkin E.V.1
New method for obtaining sheet metallic materials, reinforced by particles
The new method of producing a sheet metal – reinforced multicyclic particles via rolling. For example alumomednogo developed composite rolling process based on the use of criteria-based approach and the numerical methods of calculation
Keywords: сomposite sheet, reinforced with particles, multicyclic rolling, criterial approach, the degree of deformation, alyumomedny composite, mathematical modeling.
Reference List
1. Sposob polucheniya kompozitsionnykh materialov [Way of receiving composite materials]: pat. 2213158 Ros. Federatsiya; opubl. 10.11.2003.
2. Sposob polucheniya supermnogosloynykh raznorodnykh materialov s nanorazmernoy strukturoy sloev [Way of receiving supermultilayered diverse materials with nanodimensional structure of layers]: pat. 2548343 Ros. Federatsiya; opubl. 19.03.2014.
3. Kolpashnikov A.I., Aref'ev B.A., Manuylov V.F. Deformirovanie kompozitsionnykh materialov [Deformation of composite materials]. M.: Metallurgiya, 1982. 248 s.
2. Sposob polucheniya supermnogosloynykh raznorodnykh materialov s nanorazmernoy strukturoy sloev [Way of receiving supermultilayered diverse materials with nanodimensional structure of layers]: pat. 2548343 Ros. Federatsiya; opubl. 19.03.2014.
3. Kolpashnikov A.I., Aref'ev B.A., Manuylov V.F. Deformirovanie kompozitsionnykh materialov [Deformation of composite materials]. M.: Metallurgiya, 1982. 248 s.
3.
№1, 2016
УДК 669.018
Doriomedov M.S.1
Advanced materials for arctic application
The article discusses the materials for use in cold climates developed in the recent time, potential consumers and producers of such materials, as well as other companies whose activity is connected with development of materials
Keywords: material, cold climate.
Reference List
1. Van Sciver S.W. Helium Cryogenics. New York: Springer-Verlag New York Inc., 2012. 470 p.
2. Duthil P. Material Properties at Low Temperature / In: CERN Yellow Report. CERN-2014-005.
P. 77–95.
3. Reed R.P., Clark A.F. Materials at low temperatures. Metals Park, Ohio: American society for metals, 1983. 589 p.
4. Wigley D.A. Mechanical Properties of Materials at Low Temperatures // The International Cryogenics Monograph Series. New York: Plenum Press, 1971. 325 p.
5. Hartwig G., Evans D. Nonmetallic Materials and Composites at Low Temperatures 3. New York: Springer Science+Business Media, 1986. 220 p.
6. Low temperature properties of nickel alloy steels / In: Nickel alloy steels data book. Section 4. Bulletin C. New York: International Nickel Company Inc., 1975. 36 p.
7. Singh R. Arctic Pipeline Planning. Design, Construction and Equipment. Elsevier Inc. 2013. 120 p.
8. Dynkin A.A., Vernikovskij V.A., Dobrecov N.L., Kablov E.N. i dr. Nauchno-tehnicheskie problemy osvoenija Arktiki [Scientific and technical problems of development of the Arctic]. M.: Nauka. 2015. 490 s.
9. Kablov E.N., Starcev O.V. Fundamental'nye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah (obzor) [Basic and applied researches of corrosion and aging of materials in weather conditions (rеview)] // Aviacionnye materialy i tehnologii. 2015. №4 (37).
S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
10. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
11. Naumov I.S., Petrova A.P., Eliseev O.A., Barbotko S.L. Jeksperimental'nye issledovanija v oblasti sozdanija kremnijorganicheskih rezin s ponizhennoj gorjuchest'ju [Pilot studies in the field of creation of organic silicon rubbers with the lowered combustibility] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2015. №10. St. 09. Available at: http://www.viam-works.ru (accessed: Deсember 05, 2015). DOI: 10.18577/2307-6046-2015-0-10-9-9.
12. Chajkun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti morozostojkih rezin na osnove razlichnyh kauchukov [Features of cold-resistant rubbers on the basis of different rubbers] // Trudy VIAM. 2013. №12 St. 04. Available at: http://www.viam-works.ru (accessed: Deсember 05, 2015).
13. Kablov E.N., Kirillov V.N., Zhirnov A.D., Starcev O.V., Vapirov Ju.M. Centry dlja klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PСM] // Aviacionnaja promyshlennost'. 2009. №4. S. 36–46.
14. Oryshhenko A.S., Osokin E.P., Barahtina N.N., Dric A.M., Sosedkov S.M. Aljuminievo-magnievyj splav 1565Ch dlja kriogennogo primenenija [Aluminum magnesium alloy 1565Ч for cryogenic application] // Cvetnye metally. 2012. №11. S. 84–90.
15. Pavlova V.I., Zykov S.A., Osokin E.P. Ocenka vlijanija konstruktivno-tehnologicheskih faktorov svarki na svojstva svarnyh soedinenij iz aljuminievo-magnievyh splavov pri kriogennoj temperature [Impact assessment of constructive technology factors of welding on properties of welded connections from aluminum magnesium alloys at cryogenic temperature] // Voprosy materialovedenija. 2014. №2 (78). S. 138–154.
16. Oryshhenko A.S., Pavlova V.I., Zykov S.A., Osokin E.P. Svojstva svarnyh soedinenij aljuminievo-magnievyh splavov kriogennogo naznachenija [Properties of welded compounds of aluminum magnesium alloys of cryogenic assignment] // Cvetnye metally. 2014. №3. S. 64–70.
17. Available at: http://www.aec.org (accessed: December 05, 2015).
18. Noji Y., Yokozeki T., Ogasawara T., Ogihara S. Mechanical properties of new β-Ti alloy/CFRP bonded structure at cryogenic temperatures / In:16th international conference on composite materials. 2007. 8 p.
19. Available at: http://www.asmeconferences.org/ (accessed: December 05, 2015).
20. Available at: http://www.totalmateria.com/page.aspx?ID=CheckArticle&LN=RU&site=kts&NM=61
(accessed: December 05, 2015).
21. Available at: http://globalsupplyline.com.au/lf2_lcb_lcc_low_temp_valves/ (accessed: December 05, 2015).
2. Duthil P. Material Properties at Low Temperature / In: CERN Yellow Report. CERN-2014-005.
P. 77–95.
3. Reed R.P., Clark A.F. Materials at low temperatures. Metals Park, Ohio: American society for metals, 1983. 589 p.
4. Wigley D.A. Mechanical Properties of Materials at Low Temperatures // The International Cryogenics Monograph Series. New York: Plenum Press, 1971. 325 p.
5. Hartwig G., Evans D. Nonmetallic Materials and Composites at Low Temperatures 3. New York: Springer Science+Business Media, 1986. 220 p.
6. Low temperature properties of nickel alloy steels / In: Nickel alloy steels data book. Section 4. Bulletin C. New York: International Nickel Company Inc., 1975. 36 p.
7. Singh R. Arctic Pipeline Planning. Design, Construction and Equipment. Elsevier Inc. 2013. 120 p.
8. Dynkin A.A., Vernikovskij V.A., Dobrecov N.L., Kablov E.N. i dr. Nauchno-tehnicheskie problemy osvoenija Arktiki [Scientific and technical problems of development of the Arctic]. M.: Nauka. 2015. 490 s.
9. Kablov E.N., Starcev O.V. Fundamental'nye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah (obzor) [Basic and applied researches of corrosion and aging of materials in weather conditions (rеview)] // Aviacionnye materialy i tehnologii. 2015. №4 (37).
S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
10. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
11. Naumov I.S., Petrova A.P., Eliseev O.A., Barbotko S.L. Jeksperimental'nye issledovanija v oblasti sozdanija kremnijorganicheskih rezin s ponizhennoj gorjuchest'ju [Pilot studies in the field of creation of organic silicon rubbers with the lowered combustibility] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2015. №10. St. 09. Available at: http://www.viam-works.ru (accessed: Deсember 05, 2015). DOI: 10.18577/2307-6046-2015-0-10-9-9.
12. Chajkun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti morozostojkih rezin na osnove razlichnyh kauchukov [Features of cold-resistant rubbers on the basis of different rubbers] // Trudy VIAM. 2013. №12 St. 04. Available at: http://www.viam-works.ru (accessed: Deсember 05, 2015).
13. Kablov E.N., Kirillov V.N., Zhirnov A.D., Starcev O.V., Vapirov Ju.M. Centry dlja klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PСM] // Aviacionnaja promyshlennost'. 2009. №4. S. 36–46.
14. Oryshhenko A.S., Osokin E.P., Barahtina N.N., Dric A.M., Sosedkov S.M. Aljuminievo-magnievyj splav 1565Ch dlja kriogennogo primenenija [Aluminum magnesium alloy 1565Ч for cryogenic application] // Cvetnye metally. 2012. №11. S. 84–90.
15. Pavlova V.I., Zykov S.A., Osokin E.P. Ocenka vlijanija konstruktivno-tehnologicheskih faktorov svarki na svojstva svarnyh soedinenij iz aljuminievo-magnievyh splavov pri kriogennoj temperature [Impact assessment of constructive technology factors of welding on properties of welded connections from aluminum magnesium alloys at cryogenic temperature] // Voprosy materialovedenija. 2014. №2 (78). S. 138–154.
16. Oryshhenko A.S., Pavlova V.I., Zykov S.A., Osokin E.P. Svojstva svarnyh soedinenij aljuminievo-magnievyh splavov kriogennogo naznachenija [Properties of welded compounds of aluminum magnesium alloys of cryogenic assignment] // Cvetnye metally. 2014. №3. S. 64–70.
17. Available at: http://www.aec.org (accessed: December 05, 2015).
18. Noji Y., Yokozeki T., Ogasawara T., Ogihara S. Mechanical properties of new β-Ti alloy/CFRP bonded structure at cryogenic temperatures / In:16th international conference on composite materials. 2007. 8 p.
19. Available at: http://www.asmeconferences.org/ (accessed: December 05, 2015).
20. Available at: http://www.totalmateria.com/page.aspx?ID=CheckArticle&LN=RU&site=kts&NM=61
(accessed: December 05, 2015).
21. Available at: http://globalsupplyline.com.au/lf2_lcb_lcc_low_temp_valves/ (accessed: December 05, 2015).
4.
№5, 2015
УДК 539.3
BRAKING OF SMALL CRACKS BY OVERLOADS IN STEELS
WITH DIFFERENT STRUCTURE AT CYCLIC LOADINGS
The influence of congestion on the propagation of small fatigue cracks in steels with different structural state and mechanical properties.
Keywords: structural damage, fatigue cracks, overload.
Reference List
1. Botvina L.R. Kinetika razrushenija konstrukcionnyh materialov [Kinetics of destruction of constructional materials] . M.: Nauka. 1989. 230 s.
2. Matvienko Ju.G. Modeli i kriterii mehaniki razrushenija [Models and criteria of fracture mechanics]. M.: Fizmatlit. 2006. 328 s.
3. Kogaev V.P. Raschety na prochnosti pri naprjazhenijah, peremennyh vo vremeni [Calculations on durability at tension, variables in time]. M.: Mashinostroenie. 1977. 232 s.
4. Dronov V.S., Repkov M.Ju. Nakoplenie ustalostnoj povrezhdennosti i rost treshhin v vysokoprochnoj uglerodistoj stali pri nestacionarnyh nagruzhenijah [Accumulation of fatigue povrezhdennost and growth of cracks in high-strength carbon steel at non-stationary loadings] //Izvestija Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki. 2013. №7-1. S. 226–235.
2. Matvienko Ju.G. Modeli i kriterii mehaniki razrushenija [Models and criteria of fracture mechanics]. M.: Fizmatlit. 2006. 328 s.
3. Kogaev V.P. Raschety na prochnosti pri naprjazhenijah, peremennyh vo vremeni [Calculations on durability at tension, variables in time]. M.: Mashinostroenie. 1977. 232 s.
4. Dronov V.S., Repkov M.Ju. Nakoplenie ustalostnoj povrezhdennosti i rost treshhin v vysokoprochnoj uglerodistoj stali pri nestacionarnyh nagruzhenijah [Accumulation of fatigue povrezhdennost and growth of cracks in high-strength carbon steel at non-stationary loadings] //Izvestija Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki. 2013. №7-1. S. 226–235.
5.
№5, 2015
УДК 629.1.032.1
Operational destructions of elements of running systems of caterpillar transport systems
Factors defining conditions of destruction of elements of running gear of tracked vehicles of easy category on weight are considered and the bases for offers on optimization of configuration of elements of link of torak and the balance weight which will allow will be raised by reliability of links without further increase in weight.
Keywords: running gear, torak, balance weight, destruction, tension, tension.
Reference List
нет
6.
№3, 2015
УДК 669.793
S.P. Yatsenko1, L.A. Pasechnik1, V.M. Skachkov1
SCANDIUM: PRODUCTION AND APPLICATION
A promising feedstock for the obtaining of scandium is alumina production sludge, in which more than 150 tons of this scattered metal are annually wasted at each Ural plant. A method of carbonization of the sludge pulp by kiln gas of alumina production is described briefly. It leads to concentration of scandium, titanium, and zirconium, and decreases the toxicity of alkaline pulp in sludge fields by converting alkali into soda-hydrocarbonates with pH value lowering from 12 down to <8,5. This technology provides the production of hundred times more rich solutions than pregnant solutions of uranium in-situ leaching. An economically effective precipitation method for recovery of scandium oxide suitable for the production of master alloys, alloys, and compounds has been proposed. An injection method of synthesis of aluminum-scandium master alloys has been developed and tested in the industrial furnaces at the KUMP Public Limited Company. Advantages of application of scandium-containing all
Keywords: scandium, recovery, red mud, alloys, Al–Sc master alloy, scandium compounds, application.
Reference List
1. Shatalov V.V., Nikonov V.I., Solov'eva L.G., Par-
shin A.P. Proizvodstvo soedinenij skandija pri kompleksnoj pererabotke razlichnyh rud [Production of compounds of scandium at complex processing of different ores] //Cvetnye metally. 2003. №4.
S. 58–59.
2. Putilov A.V., Shatalov V.V. Syr'evaja baza razvivajushhejsja atomnoj jenergetiki [Source of raw materials of developing nuclear power] //Cvetnye metally. 2006. №9. S. 102–108.
3. Jacenko S.P., Pjagaj I.N. Karbonizacija pul'py krasnogo shlama glinozemnogo proizvodstva s izvlecheniem skandija [Karbonizatsiya of pulp red shlama aluminous production with scandium extraction]
//Himicheskaja tehnologija. 2009. №4. S. 231–237.
4. Pjagaj I.N., Jacenko S.P., Skachkov V.M. Opytno-promyshlennoe proizvodstvo dlja izvlechenija skandija iz shlama glinozemnogo proizvodstva [Trial production for scandium extraction from shlama aluminous production] //Cvetnye metally. 2011. №12. S. 75–79.
5. Pasechnik L.A., Pjagaj I.N., Skachkov V.M., Jacenko S.P. Izvlechenie redkih jelementov iz otval'nogo shlama glinozemnogo proizvodstva s ispol'zovaniem othodjashhih gazov pechej spekanija [Extraction of rare elements from otvalny shlama aluminous production with use of off gases of furnaces of agglomeration] //Jekologija i promyshlennost' Rossii. 2013. №6. S. 36–38.
6. Timofeev K.L., Nabojchenko S.S., Lebed' A.B., Akulich L.F. Sorbcionnaja tehnologija izvlechenija cvetnyh metallov iz shahtnyh vod [Sorbtsionny extraction technology of non-ferrous metals from mine waters] //Izvestija VUZov. Cvetnaja metallurgija. 2012. №6. S. 7–10.
7. Kazancev V.P., Beketov A.R., Kudrjavskij Ju.P., Rychkov V.N., Gorohov D.S. Perspek-tivy izvlechenija skandija iz rastvorov podzemnogo vyshhelachivanija mineral'nogo syr'ja [Perspectives of extraction of scandium from solutions of underground lixiviation of mineral raw material] //Cvetnaja metallurgija. 2009. №1. S. 37–41.
8. Ivanov L.I., Ivanov V.V., Lazorenko V.M., Platov Ju.M., Tovtin V.I. Perspektivy primenenija splavov na osnove sistemy aljuminij–magnij–skandij v jadernoj jenergetike [Perspectives of application of alloys on the basis of system aluminum-magnesium-scandium in nuclear power] //Tehnologija legkih splavov. 1990. №12. S. 46–50.
9. Azhazha V.M., Borc B.V., Vanzha A.F., Rybal'chenko N.D., Shevjakova Je.P. Vozmozhnosti primenenija redkozemel'nyh jelementov pri sozdanii konstrukcionnyh materialov dlja atomnoj promyshlennosti Ukrainy [Possibilities of application of rare earth elements at creation of constructional materials for the nuclear industry of Ukraine] //Voprosy atomnoj nauki i tehniki. Serija 17. 2008. №1. S. 195–201.
10. Skachkov V.M., Jacenko S.P. Poluchenie Sc-, Zr-, Hf-, Y-ligatur na osnove aljuminija metodom vysokotemperaturnyh obmennyh reakcij v rasplavah solej [Receiving Sc-, Zr-, Hf-, Y-ligatures on the basis of aluminum method of high-temperature exchange reactions in rasplavakh salts] //Cvetnye metally. 2011. №3. S. 22–26.
11. Jacenko S.P., Skachkov V.M., Jacenko А.S. Poluchenie aljuminij-skandievyh splavov metodom inzhekcii tehnologicheskih poroshkov v rasplav. V. Inzhekcija tehnologicheskih poroshkov [Receiving aluminum-scandium alloys method of injection of technological powders in rasplav. V. Injection of technological powders] //Rasplavy. 2011. №4.
S. 41–46.
12. Ovsjannikov B.V., Jacenko S.P., Varchenja P.A., Skachkov V.M. Poluchenie aljuminij-skandievyh splavov metodom inzhekcii tehnologicheskih poroshkov v rasplav [Receiving aluminum - scandium alloys method of injection of technological powders in rasplav] //Tehnologija metallov. 2011. №5.
S. 23–29.
shin A.P. Proizvodstvo soedinenij skandija pri kompleksnoj pererabotke razlichnyh rud [Production of compounds of scandium at complex processing of different ores] //Cvetnye metally. 2003. №4.
S. 58–59.
2. Putilov A.V., Shatalov V.V. Syr'evaja baza razvivajushhejsja atomnoj jenergetiki [Source of raw materials of developing nuclear power] //Cvetnye metally. 2006. №9. S. 102–108.
3. Jacenko S.P., Pjagaj I.N. Karbonizacija pul'py krasnogo shlama glinozemnogo proizvodstva s izvlecheniem skandija [Karbonizatsiya of pulp red shlama aluminous production with scandium extraction]
//Himicheskaja tehnologija. 2009. №4. S. 231–237.
4. Pjagaj I.N., Jacenko S.P., Skachkov V.M. Opytno-promyshlennoe proizvodstvo dlja izvlechenija skandija iz shlama glinozemnogo proizvodstva [Trial production for scandium extraction from shlama aluminous production] //Cvetnye metally. 2011. №12. S. 75–79.
5. Pasechnik L.A., Pjagaj I.N., Skachkov V.M., Jacenko S.P. Izvlechenie redkih jelementov iz otval'nogo shlama glinozemnogo proizvodstva s ispol'zovaniem othodjashhih gazov pechej spekanija [Extraction of rare elements from otvalny shlama aluminous production with use of off gases of furnaces of agglomeration] //Jekologija i promyshlennost' Rossii. 2013. №6. S. 36–38.
6. Timofeev K.L., Nabojchenko S.S., Lebed' A.B., Akulich L.F. Sorbcionnaja tehnologija izvlechenija cvetnyh metallov iz shahtnyh vod [Sorbtsionny extraction technology of non-ferrous metals from mine waters] //Izvestija VUZov. Cvetnaja metallurgija. 2012. №6. S. 7–10.
7. Kazancev V.P., Beketov A.R., Kudrjavskij Ju.P., Rychkov V.N., Gorohov D.S. Perspek-tivy izvlechenija skandija iz rastvorov podzemnogo vyshhelachivanija mineral'nogo syr'ja [Perspectives of extraction of scandium from solutions of underground lixiviation of mineral raw material] //Cvetnaja metallurgija. 2009. №1. S. 37–41.
8. Ivanov L.I., Ivanov V.V., Lazorenko V.M., Platov Ju.M., Tovtin V.I. Perspektivy primenenija splavov na osnove sistemy aljuminij–magnij–skandij v jadernoj jenergetike [Perspectives of application of alloys on the basis of system aluminum-magnesium-scandium in nuclear power] //Tehnologija legkih splavov. 1990. №12. S. 46–50.
9. Azhazha V.M., Borc B.V., Vanzha A.F., Rybal'chenko N.D., Shevjakova Je.P. Vozmozhnosti primenenija redkozemel'nyh jelementov pri sozdanii konstrukcionnyh materialov dlja atomnoj promyshlennosti Ukrainy [Possibilities of application of rare earth elements at creation of constructional materials for the nuclear industry of Ukraine] //Voprosy atomnoj nauki i tehniki. Serija 17. 2008. №1. S. 195–201.
10. Skachkov V.M., Jacenko S.P. Poluchenie Sc-, Zr-, Hf-, Y-ligatur na osnove aljuminija metodom vysokotemperaturnyh obmennyh reakcij v rasplavah solej [Receiving Sc-, Zr-, Hf-, Y-ligatures on the basis of aluminum method of high-temperature exchange reactions in rasplavakh salts] //Cvetnye metally. 2011. №3. S. 22–26.
11. Jacenko S.P., Skachkov V.M., Jacenko А.S. Poluchenie aljuminij-skandievyh splavov metodom inzhekcii tehnologicheskih poroshkov v rasplav. V. Inzhekcija tehnologicheskih poroshkov [Receiving aluminum-scandium alloys method of injection of technological powders in rasplav. V. Injection of technological powders] //Rasplavy. 2011. №4.
S. 41–46.
12. Ovsjannikov B.V., Jacenko S.P., Varchenja P.A., Skachkov V.M. Poluchenie aljuminij-skandievyh splavov metodom inzhekcii tehnologicheskih poroshkov v rasplav [Receiving aluminum - scandium alloys method of injection of technological powders in rasplav] //Tehnologija metallov. 2011. №5.
S. 23–29.
7.
№3, 2015
УДК 669.716:621.785
V.G. Shmorgun1, O.V Slautin1, V.N. Arisova1, D.A Yevstropov1, Y.V. Mironova1, V.P. Kulevich1
STRUCTURE AND A PHASE COMPOSITION OF COATINGS SYSTEMS Ti–Cu, IS FORMED ON THE SURFACE OF TITAN
It is shown that thermal treatment of welded explosion copper-titanium composite allows to form on the surface of titanium double coating of titanium kupridov hardness of 3,9–4,7 GPa.
Keywords: copper, titanium, intermetallic, explosion welding, diffusion annealing.
Reference List
1. Morozova E.A., Muratov V.S. Lazernoe legirovanie poverkhnosti titana med'yu [Laser doping of surface of titanium by copper] //Uspekhi sovremennogo estestvoznaniya. 2009. №11. S. 71.
2. Shmorgun V.G., Slautin O.V., Arisova V.N., Evstropov D.A. Issledovanie fazovogo sostava diffuzionnoy zony v kompozite sistemy med'–titan [Research of phase structure of diffusion zone in system composite copper-titanium] //Izvestiya VolgGTU. Ser.: «Problemy materialovedeniya, svarki i prochnosti v mashinostroenii». 2013. №6 (109). S. 32–35.
2. Shmorgun V.G., Slautin O.V., Arisova V.N., Evstropov D.A. Issledovanie fazovogo sostava diffuzionnoy zony v kompozite sistemy med'–titan [Research of phase structure of diffusion zone in system composite copper-titanium] //Izvestiya VolgGTU. Ser.: «Problemy materialovedeniya, svarki i prochnosti v mashinostroenii». 2013. №6 (109). S. 32–35.
8.
№1, 2015
УДК 669.15.74.194–15.669.17
Trotsan A.I.1, Burova D.V.1
Mechanical properties of steel 15G by heat treatment, which including heating in intercritical temperature interval (ITI)
The results of research on getting good combination of mechanical properties of steel 15G by heat treatment, which including heating in intercritical temperature interval (ITI),which creating in them heterogeneous multiphase structure.
Keywords: intercritical temperature interval, hardening, isothermal hardening, multiphase structure, beynite, metastable austenite.